Do you want to publish a course? Click here

Signatures of internal rotation discovered in the Kepler data of five slowly pulsating B stars

69   0   0.0 ( 0 )
 Added by P\\'eter P\\'apics
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Massive stars are important building blocks of the Universe, and their stellar structure and evolution models are fundamental cornerstones of various fields in modern astrophysics. The precision of these models is limited by our lack of understanding of various internal mixing processes that significantly influence the lifetime of these objects (e.g. core overshoot, chemical mixing, or the internal differential rotation). Our goal is to calibrate models by extending the sample of available seismic studies of slowly pulsating B (SPB) stars, providing input for theoretical modelling efforts that will deliver precise constraints on the parameters describing the internal mixing processes in these objects. We used spectral synthesis and disentangling techniques to derive fundamental parameters and to determine precise orbital parameters from high-resolution spectra. We employed custom masks to construct light curves from the Kepler pixel data and used standard time-series analysis tools to construct a set of significant frequencies for each target. These sets were first filtered from combination frequencies, and then screened for period spacing patterns. We detect gravity mode period series of modes of the same degree l with consecutive radial order n in four new and one revisited SPB star. These predominantly prograde dipole series (covering ~10-40 radial orders) are influenced by rotation and carry signatures of chemical mixing processes. Our spectroscopic analysis, in addition to placing each object inside the SPB instability strip and identifying KIC 4930889 as an SB2 binary, reveals that KIC 11971405 is a fast rotator that shows very weak Be signatures. Together with the observed photometric outbursts this illustrates that this Be star is a fast rotating SPB star. We hypothesise that the outbursts might be connected to its very densely compressed oscillation spectrum.



rate research

Read More

The survey phase of the Kepler Mission includes a number of hot subdwarf B (sdB) stars to search for nonradial pulsations. We present our analysis of two sdB stars that are found to be g-mode pulsators of the V1093 Her class. These two stars also display the distinct irradiation effect typical of sdB stars with a close M-dwarf companion with orbital periods of less than half a day. Because the orbital period is so short, the stars should be in synchronous rotation, and if so, the rotation period should imprint itself on the multiplet structure of the pulsations. However, we do not find clear evidence for such rotational splitting. Though the stars do show some frequency spacings that are consistent with synchronous rotation, they also display multiplets with splittings that are much smaller. Longer-duration time series photometry will be needed to determine if those small splittings are in fact rotational splitting, or caused by slow amplitude or phase modulation. Further data should also improve the signal-to-noise, perhaps revealing lower amplitude periodicities that could confirm the expectation of synchronous rotation. The pulsation periods seen in these stars show period spacings that are suggestive of high-overtone g-mode pulsations.
113 - Jordan Van Beeck 2021
Context. Slowly pulsating B (SPB) stars are main-sequence multi-periodic oscillators that display non-radial gravity modes. For a fraction of these pulsators, 4-year photometric light curves obtained with the Kepler space telescope reveal period spacing patterns from which their internal rotation and mixing can be inferred. In this inference, any direct resonant mode coupling has usually been ignored so far. Aims. We re-analysed the light curves of a sample of 38 known Kepler SPB stars. For 26 of those, the internal structure, including rotation and mixing, was recently inferred from their dipole prograde oscillation modes. Our aim is to detect direct nonlinear resonant mode coupling among the largest-amplitude gravity modes. Methods. We extract up to 200 periodic signals per star with five different iterative prewhitening strategies based on linear and nonlinear regression applied to the light curves. We then identify candidate coupled gravity modes by verifying whether they fulfil resonant phase relations. Results. For 32 of 38 SPB stars we find at least 1 candidate resonance that is detected in both the linear and the best nonlinear regression model fit to the light curve and involves at least one of the two largest-amplitude modes. Conclusions. The majority of the Kepler SPB stars reveal direct nonlinear resonances based on the largest-amplitude modes. These stars are thus prime targets for nonlinear asteroseismic modelling of intermediate-mass dwarfs to assess the importance of mode couplings in probing their internal physics.
Kepler ultra-high precision photometry of long and continuous observations provides a unique dataset in which surface rotation and variability can be studied for thousands of stars. Because many of these old field stars also have independently measured asteroseismic ages, measurements of rotation and activity are particularly interesting in the context of age-rotation-activity relations. In particular, age-rotation relations generally lack good calibrators at old ages, a problem that this Kepler sample of old-field stars is uniquely suited to address. We study the surface rotation and photometric magnetic activity of a subset of 540 solar-like stars on the main- sequence and the subgiant branch for which stellar pulsations have been measured. The rotation period was determined by comparing the results from two different analysis methods: i) the projection onto the frequency domain of the time-period analysis, and ii) the autocorrelation function (ACF) of the light curves. Reliable surface rotation rates were then extracted by comparing the results from two different sets of calibrated data and from the two complementary analyses. We report rotation periods for 310 out of 540 targets (excluding known binaries and candidate planet-host stars); our measurements span a range of 1 to 100 days. The photometric magnetic activity levels of these stars were computed, and for 61.5% of the dwarfs, this level is similar to the range, from minimum to maximum, of the solar magnetic activity. We demonstrate that hot dwarfs, cool dwarfs, and subgiants have very different rotation-age relationships, highlighting the importance of separating out distinct populations when interpreting stellar rotation periods. Our sample of cool dwarf stars with age and metallicity data of the highest quality is consistent with gyrochronology relations reported in the literature.
265 - P. G. Beck , K. Hambleton , J. Vos 2013
The unparalleled photometric data obtained by NASAs Kepler space telescope led to an improved understanding of red giant stars and binary stars. Seismology allows us to constrain the properties of red giants. In addition to eclipsing binaries, eccentric non-eclipsing binaries, exhibiting ellipsoidal modulations, have been detected with Kepler. We aim to study the properties of eccentric binary systems containing a red giant star and derive the parameters of the primary giant component. We apply asteroseismic techniques to determine masses and radii of the primary component of each system. For a selected target, light and radial velocity curve modelling techniques are applied to extract the parameters of the system. The effects of stellar on the binary system are studied. The paper presents the asteroseismic analysis of 18 pulsating red giants in eccentric binary systems, for which masses and radii were constrained. The orbital periods of these systems range from 20 to 440days. From radial velocity measurements we find eccentricities between e=0.2 to 0.76. As a case study we present a detailed analysis of KIC5006817. From seismology we constrain the rotational period of the envelope to be at least 165 d, roughly twice the orbital period. The stellar core rotates 13 times faster than the surface. From the spectrum and radial velocities we expect that the Doppler beaming signal should have a maximum amplitude of 300ppm in the light curve. Through binary modelling, we determine the mass of the secondary component to be 0.29$pm$0.03,$M_odot$. For KIC5006817 we exclude pseudo-synchronous rotation of the red giant with the orbit. The comparison of the results from seismology and modelling of the light curve shows a possible alignment of the rotational and orbital axis at the 2$sigma$ level. Red giant eccentric systems could be progenitors of cataclysmic variables and hot subdwarf B stars.
In the Sun, the frequencies of the acoustic modes are observed to vary in phase with the magnetic activity level. These frequency variations are expected to be common in solar-type stars and contain information about the activity-related changes that take place in their interiors. The unprecedented duration of Kepler photometric time-series provides a unique opportunity to detect and characterize stellar magnetic cycles through asteroseismology. In this work, we analyze a sample of 87 solar-type stars, measuring their temporal frequency shifts over segments of length 90 days. For each segment, the individual frequencies are obtained through a Bayesian peak-bagging tool. The mean frequency shifts are then computed and compared with: 1) those obtained from a cross-correlation method; 2) the variation in the mode heights; 3) a photometric activity proxy; and 4) the characteristic timescale of the granulation. For each star and 90-d sub-series, we provide mean frequency shifts, mode heights, and characteristic timescales of the granulation. Interestingly, more than 60% of the stars show evidence for (quasi-)periodic variations in the frequency shifts. In the majority of the cases, these variations are accompanied by variations in other activity proxies. About 20% of the stars show mode frequencies and heights varying approximately in phase, in opposition to what is observed for the Sun.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا