Do you want to publish a course? Click here

Rotation and magnetism of Kepler pulsating solar-like stars. Towards asteroseismically calibrated age-rotation relations

162   0   0.0 ( 0 )
 Added by Rafael A. Garcia
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Kepler ultra-high precision photometry of long and continuous observations provides a unique dataset in which surface rotation and variability can be studied for thousands of stars. Because many of these old field stars also have independently measured asteroseismic ages, measurements of rotation and activity are particularly interesting in the context of age-rotation-activity relations. In particular, age-rotation relations generally lack good calibrators at old ages, a problem that this Kepler sample of old-field stars is uniquely suited to address. We study the surface rotation and photometric magnetic activity of a subset of 540 solar-like stars on the main- sequence and the subgiant branch for which stellar pulsations have been measured. The rotation period was determined by comparing the results from two different analysis methods: i) the projection onto the frequency domain of the time-period analysis, and ii) the autocorrelation function (ACF) of the light curves. Reliable surface rotation rates were then extracted by comparing the results from two different sets of calibrated data and from the two complementary analyses. We report rotation periods for 310 out of 540 targets (excluding known binaries and candidate planet-host stars); our measurements span a range of 1 to 100 days. The photometric magnetic activity levels of these stars were computed, and for 61.5% of the dwarfs, this level is similar to the range, from minimum to maximum, of the solar magnetic activity. We demonstrate that hot dwarfs, cool dwarfs, and subgiants have very different rotation-age relationships, highlighting the importance of separating out distinct populations when interpreting stellar rotation periods. Our sample of cool dwarf stars with age and metallicity data of the highest quality is consistent with gyrochronology relations reported in the literature.



rate research

Read More

We use various method to extract surface rotation periods of Kepler targets exhibiting solar-like oscillations and compare their results.
We study the distribution of the photometric rotation period (Prot), which is a direct measurement of the surface rotation at active latitudes, for three subsamples of Sun-like stars: one from CoRoT data and two from Kepler data. We identify the main populations of these samples and interpret their main biases specifically for a comparison with the solar Prot. Prot and variability amplitude (A) measurements were obtained from public CoRoT and Kepler catalogs combined with physical parameters. Because these samples are subject to selection effects, we computed synthetic samples with simulated biases to compare with observations, particularly around the location of the Sun in the HR diagram. Theoretical grids and empirical relations were used to combine physical parameters with Prot and A. Biases were simulated by performing cutoffs on the physical and rotational parameters in the same way as in each observed sample. A crucial cutoff is related with the detectability of the rotational modulation, which strongly depends on A. The synthetic samples explain the observed Prot distributions of Sun-like stars as having two main populations: one of young objects (group I, with ages younger than ~1 Gyr) and another of MS and evolved stars (group II, with ages older than ~1 Gyr). The proportions of groups I and II in relation to the total number of stars range within 64-84% and 16-36%, respectively. Hence, young objects abound in the distributions, producing the effect of observing a high number of short periods around the location of the Sun in the HR diagram. Differences in the Prot distributions between the CoRoT and Kepler Sun-like samples may be associated with different Galactic populations. Overall, the synthetic distribution around the solar period agrees with observations, which suggests that the solar rotation is normal with respect to Sun-like stars within the accuracy of current data.
146 - A. A. Vidotto 2014
We investigate how the observed large-scale surface magnetic fields of low-mass stars (~0.1 -- 2 Msun), reconstructed through Zeeman-Doppler imaging (ZDI), vary with age t, rotation and X-ray emission. Our sample consists of 104 magnetic maps of 73 stars, from accreting pre-main sequence to main-sequence objects (1 Myr < t < 10 Gyr). For non-accreting dwarfs we empirically find that the unsigned average large-scale surface field <|Bv|> is related to age as $t^{-0.655 pm 0.045}$. This relation has a similar dependence to that identified by Skumanich (1972), used as the basis for gyrochronology. Likewise, our relation could be used as an age-dating method (magnetochronology). The trends with rotation we find for the large-scale stellar magnetism are consistent with the trends found from Zeeman broadening measurements (sensitive to large- and small-scale fields). These similarities indicate that the fields recovered from both techniques are coupled to each other, suggesting that small- and large-scale fields could share the same dynamo field generation processes. For the accreting objects, fewer statistically significant relations are found, with one being a correlation between the unsigned magnetic flux and rotation period. We attribute this to a signature of star-disc interaction, rather than being driven by the dynamo.
We present abundances of 21 elements in a sample of 13 bright FG dwarfs drawn from the Kepler LEGACY sample to examine the applicability of the abundance-age relations to stars with properties strongly departing from solar. These stars have precise asteroseismic ages that can be compared to the abundance-based estimates. We analyse the well-known binary 16 Cyg AB for validation purposes and confirm the existence of a slight metal enhancement (~0.02 dex) in the primary, which might arise from planetary formation/ingestion. We draw attention to systematic errors in some widely-used catalogues of non-seismic parameters that may significantly bias asteroseismic inferences. In particular, we find evidence that the ASPCAP Teff scale used for the APOKASC catalogue is too cool for dwarfs and that the [Fe/H] values are underestimated by ~0.1 dex. We compare seismic ages to those inferred from empirical abundance-age relations based on ages from PARSEC isochrones and abundances obtained in the framework of the HARPS-GTO program. These calibrations take into account a dependency with the stellar effective temperature, metallicity, and/or mass. We find that the seismic and abundance-based ages differ on average by 1.5-2 Gyrs, while taking into account a dependency with one or two stellar parameters in the calibrations leads to a global improvement of up to ~0.5 Gyr. However, even in that case we find that seismic ages are systematically larger by ~0.7 Gyr. We argue that it may be ascribed to a variety of causes including the presence of small zero-point offsets between our abundances and those used to construct the calibrations or to the choice of the set of theoretical isochrones. The conclusions above are supported by the analysis of literature data for a larger number of Kepler targets. [Abridged]
To explore the physics of large-scale flows in solar-like stars, we perform 3D anelastic simulations of rotating convection for global models with stratification resembling the solar interior. The numerical method is based on an implicit large-eddy simulation approach designed to capture effects from non-resolved small scales. We obtain two regimes of differential rotation, with equatorial zonal flows accelerated either in the direction of rotation (solar-like) or in the opposite direction (anti-solar). While the models with the solar-like differential rotation tend to produce multiple cells of meridional circulation, the models with anti-solar differential rotation result in only one or two meridional cells. Our simulations indicate that the rotation and large-scale flow patterns critically depend on the ratio between buoyancy and Coriolis forces. By including a subadiabatic layer at the bottom of the domain, corresponding to the stratification of a radiative zone, we reproduce a layer of strong radial shear similar to the solar tachocline. Similarly, enhanced superadiabaticity at the top results in a near-surface shear layer located mainly at lower latitudes. The models reveal a latitudinal entropy gradient localized at the base of the convection zone and in the stable region, which however does not propagate across the convection zone. In consequence, baroclinicity effects remain small and the rotation iso-contours align in cylinders along the rotation axis. Our results confirm the alignment of large convective cells along the rotation axis in the deep convection zone, and suggest that such banana-cell pattern can be hidden beneath the supergranulation layer.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا