No Arabic abstract
It is known that an engine with ideal efficiency ($eta =1$ for a chemical engine and $e = e_{rm Carnot}$ for a thermal one) has zero power because a reversible cycle takes an infinite time. However, at least from a theoretical point of view, it is possible to conceive (irreversible) engines with nonzero power that can reach ideal efficiency. Here this is achieved by replacing the usual linear transport law by a sublinear one and taking the step-function limit for the particle current (chemical engine) or heat current (thermal engine) versus the applied force. It is shown that in taking this limit exact thermodynamic inequalities relating the currents to the entropy production are not violated.
The efficiency at maximum power has been investigated extensively, yet the practical control scheme to achieve it remains elusive. We fill such gap with a stepwise Carnot-like cycle, which consists the discrete isothermal process (DIP) and adiabatic process. With DIP, we validate the widely adopted assumption of mathscr{C}/t relation of the irreversible entropy generation S^{(mathrm{ir})}, and show the explicit dependence of the coefficient mathscr{C} on the fluctuation of the speed of tuning energy levels as well as the microscopic coupling constants to the heat baths. Such dependence allows to control the irreversible entropy generation by choosing specific control schemes. We further demonstrate the achievable efficiency at maximum power and the corresponding control scheme with the simple two-level system. Our current work opens new avenues for the experimental test, which was not feasible due to the lack the of the practical control scheme in the previous low-dissipation model or its equivalents.
We present a mechanism for efficiency increase in quantum heat engines containing internal energy levels that do not couple to the external work sink. The gain is achieved by using these levels to channel heat in a direction opposite to the one dictated by the Second Law. No quantum coherence, quantum correlations or ergotropy are required. A similar mechanism allows the engine to run `in reverse and still produce useful work. We illustrate these ideas using a simple quantum Otto cycle in a coupled-spin system. We find this engine also exhibits other counter-intuitive phenomenology. For example, its efficiency may increase as the temperature difference between the heat baths decreases. Conversely, it may cease to operate if the hotter bath becomes too hot, or the colder bath too cold.
The efficiency of small thermal machines is typically a fluctuating quantity. We here study the efficiency large deviation function of two exemplary quantum heat engines, the harmonic oscillator and the two-level Otto cycles. While the efficiency statistics follows the universal theory of Verley et al. [Nature Commun. 5, 4721 (2014)] for nonadiabatic driving, we find that the latter framework does not apply in the adiabatic regime. We relate this unusual property to the perfect anticorrelation between work output and heat input that generically occurs in the broad class of scale-invariant adiabatic quantum Otto heat engines and suppresses thermal as well as quantum fluctuations.
The size of large cliff failures may be described in several ways, for instance considering the horizontal eroded area at the cliff top and the maximum local retreat of the coastline. Field studies suggest that, for large failures, the frequencies of these two quantities decrease as power laws of the respective magnitudes, defining two different decay exponents. Moreover, the horizontal area increases as a power law of the maximum local retreat, identifying a third exponent. Such observation suggests that the geometry of cliff failures are statistically similar for different magnitudes. Power laws are familiar in the physics of critical systems. The corresponding exponents satisfy precise relations and are proven to be universal features, common to very different systems. Following the approach typical of statistical physics, we propose a scaling hypothesis resulting in a relation between the three above exponents: there is a precise, mathematical relation between the distributions of magnitudes of erosion events and their geometry. Beyond its theoretical value, such relation could be useful for the validation of field catalogs analysis. Pushing the statistical physics approach further, we develop a numerical model of marine erosion that reproduces the observed failure statistics. Despite the minimality of the model, the exponents resulting from extensive numerical simulations fairly agree with those measured on the field. These results suggest that the mathematical theory of percolation, which lies behind our simple model, can possibly be used as a guide to decipher the physics of rocky coast erosion and could provide precise predictions to the statistics of cliff collapses.