Do you want to publish a course? Click here

Power laws statistics of cliff failures, scaling and percolation

175   0   0.0 ( 0 )
 Added by Andrea Baldassarri
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The size of large cliff failures may be described in several ways, for instance considering the horizontal eroded area at the cliff top and the maximum local retreat of the coastline. Field studies suggest that, for large failures, the frequencies of these two quantities decrease as power laws of the respective magnitudes, defining two different decay exponents. Moreover, the horizontal area increases as a power law of the maximum local retreat, identifying a third exponent. Such observation suggests that the geometry of cliff failures are statistically similar for different magnitudes. Power laws are familiar in the physics of critical systems. The corresponding exponents satisfy precise relations and are proven to be universal features, common to very different systems. Following the approach typical of statistical physics, we propose a scaling hypothesis resulting in a relation between the three above exponents: there is a precise, mathematical relation between the distributions of magnitudes of erosion events and their geometry. Beyond its theoretical value, such relation could be useful for the validation of field catalogs analysis. Pushing the statistical physics approach further, we develop a numerical model of marine erosion that reproduces the observed failure statistics. Despite the minimality of the model, the exponents resulting from extensive numerical simulations fairly agree with those measured on the field. These results suggest that the mathematical theory of percolation, which lies behind our simple model, can possibly be used as a guide to decipher the physics of rocky coast erosion and could provide precise predictions to the statistics of cliff collapses.



rate research

Read More

In bootstrap percolation it is known that the critical percolation threshold tends to converge slowly to zero with increasing system size, or, inversely, the critical size diverges fast when the percolation probability goes to zero. To obtain higher-order terms (that is, sharp and sharper thresholds) for the percolation threshold in general is a hard question. In the case of two-dimensional anisotropic models, sometimes correction terms can be obtained from inversion in a relatively simple manner.
In some systems, the connecting probability (and thus the percolation process) between two sites depends on the geometric distance between them. To understand such process, we propose gravitationally correlated percolation models for link-adding networks on the two-dimensional lattice $G$ with two strategies $S_{rm max}$ and $S_{rm min}$, to add a link $l_{i,j}$ to connect site $i$ and site $j$ with mass $m_i$ and $m_j$, respectively; $m_i$ and $m_j$ are sizes of the clusters which contain site $i$ and site $j$, respectively. The probability to add the link $l_{i,j}$ is related to the generalized gravity $g_{ij} equiv m_i m_j/r_{ij}^d$, where $r_{ij}$ is the geometric distance between $i$ and $j$, and $d$ is an adjustable decaying exponent. In the beginning of the simulation, all sites of $G$ are occupied and there is no link. In the simulation process, two inter-cluster links $l_{i,j}$ and $l_{k,n}$ are randomly chosen and the generalized gravities $g_{ij}$ and $g_{kn}$ are computed. In the strategy $S_{rm max}$, the link with larger generalized gravity is added. In the strategy $S_{rm min}$, the link with smaller generalized gravity is added, which include percolation on the ErdH os-Renyi random graph and the Achlioptas process of explosive percolation as the limiting cases, $d to infty$ and $d to 0$, respectively. Adjustable strategies facilitate or inhibit the network percolation in a generic view. We calculate percolation thresholds $T_c$ and critical exponents $beta$ by numerical simulations. We also obtain various finite-size scaling functions for the node fractions in percolating clusters or arrival of saturation length with different intervening strategies.
The out-of-time-ordered correlator (OTOC) is central to the understanding of information scrambling in quantum many-body systems. In this work, we show that the OTOC in a quantum many-body system close to its critical point obeys dynamical scaling laws which are specified by a few universal critical exponents of the quantum critical point. Such scaling laws of the OTOC imply a universal form for the butterfly velocity of a chaotic system in the quantum critical region and allow one to locate the quantum critical point and extract all universal critical exponents of the quantum phase transitions. We numerically confirm the universality of the butterfly velocity in a chaotic model, namely the transverse axial next-nearest-neighbor Ising model, and show the feasibility of extracting the critical properties of quantum phase transitions from OTOC using the Lipkin-Meshkov-Glick (LMG) model.
The dynamics of sliding friction is mainly governed by the frictional force. Previous studies have shown that the laboratory-scale friction is well described by an empirical law stated in terms of the slip velocity and the state variable. The state variable is a function of time, representing the physicochemical details of the sliding interface. Since this law is purely empirical, there has been no unique equation for time evolution of the state variable. Major equations known to date have their own merits and drawbacks. To shed light on this problem from a new aspect, here we investigate the feasibility of periodic motion without the help of radiation damping. Assuming a patch on which the slip velocity is perturbed from the rest of the sliding interface, we prove analytically that three major evolution laws fail to reproduce periodic motion without radiation damping. Furthermore, we propose two new evolution equations that can produce periodic motion without radiation damping. These two equations are scrutinized from the viewpoint of experimental validity and the relevance to slow earthquakes.
It is known that an engine with ideal efficiency ($eta =1$ for a chemical engine and $e = e_{rm Carnot}$ for a thermal one) has zero power because a reversible cycle takes an infinite time. However, at least from a theoretical point of view, it is possible to conceive (irreversible) engines with nonzero power that can reach ideal efficiency. Here this is achieved by replacing the usual linear transport law by a sublinear one and taking the step-function limit for the particle current (chemical engine) or heat current (thermal engine) versus the applied force. It is shown that in taking this limit exact thermodynamic inequalities relating the currents to the entropy production are not violated.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا