Do you want to publish a course? Click here

A Log PSS morphism with applications to Lagrangian embeddings

64   0   0.0 ( 0 )
 Added by Sheel Ganatra
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

Let $M$ be a smooth projective variety and $mathbf{D}$ an ample normal crossings divisor. From topological data associated to the pair $(M, mathbf{D})$, we construct, under assumptions on Gromov-Witten invariants, a series of distinguished classes in symplectic cohomology of the complement $X = M backslash mathbf{D}$. Under further topological assumptions on the pair, these classes can be organized into a Log(arithmic) PSS morphism, from a vector space which we term the logarithmic cohomology of $(M, mathbf{D})$ to symplectic cohomology. Turning to applications, we show that these methods and some knowledge of Gromov-Witten invariants can be used to produce dilations and quasi-dilations (in the sense of Seidel-Solomon [SS]) in examples such as conic bundles. In turn, the existence of such elements imposes strong restrictions on exact Lagrangian embeddings, especially in dimension 3. For instance, we prove that any exact Lagrangian in a complex 3-dimensional conic bundle over $(mathbb{C}^*)^2$ must be diffeomorphic to $T^3$ or a connect sum $#^n S^1 times S^2$.



rate research

Read More

We study a cylindrical Lagrangian cobordism group for Lagrangian torus fibres in symplectic manifolds which are the total spaces of smooth Lagrangian torus fibrations. We use ideas from family Floer theory and tropical geometry to obtain both obstructions to and constructions of cobordisms; in particular, we give examples of symplectic tori in which the cobordism group has no non-trivial cobordism relations between pairwise distinct fibres, and ones in which the degree zero fibre cobordism group is a divisible group. The results are independent of but motivated by mirror symmetry, and a relation to rational equivalence of 0-cycles on the mirror rigid analytic space.
149 - Cheuk Yu Mak , Weiwei Wu 2018
We study Dehn twists along Lagrangian submanifolds that are finite quotients of spheres. We decribe the induced auto-equivalences to the derived Fukaya category and explain its relation to twists along spherical functors.
147 - Cheuk Yu Mak , Ivan Smith 2019
Let $omega$ denote an area form on $S^2$. Consider the closed symplectic 4-manifold $M=(S^2times S^2, Aomega oplus a omega)$ with $0<a<A$. We show that there are families of displaceable Lagrangian tori $L_{0,x},, L_{1,x} subset M$, for $x in [0,1]$, such that the two-component link $L_{0,x} cup L_{1,x}$ is non-displaceable for each $x$.
83 - Cheuk Yu Mak , Weiwei Wu 2015
In this paper we introduce the following new ingredients: (1) rework on part of the Lagrangian surgery theory; (2) constructions of Lagrangian cobordisms on product symplectic manifolds; (3) extending Biran-Cornea Lagrangian cobordism theory to the immersed category. As a result, we manifest Seidels exact sequences (both the Lagrangian version and the symplectomorphism version), as well as Wehrheim-Woodwards family Dehn twist sequence (including the codimension-1 case missing in the literature) as consequences of our surgery/cobordism constructions. Moreover, we obtain an expression of the autoequivalence of Fukaya category induced by Dehn twists along Lagrangian $mathbb{RP}^n$, $mathbb{CP}^n$ and $mathbb{HP}^n$, which matches Huybrechts-Thomass mirror prediction of the $mathbb{CP}^n$ case modulo connecting maps. We also prove the split generation of any symplectomorphism by Dehn twists in $ADE$-type Milnor fibers.
A Kahler-type form is a symplectic form compatible with an integrable complex structure. Let M be a either a torus or a K3-surface equipped with a Kahler-type form. We show that the homology class of any Maslov-zero Lagrangian torus in M has to be non-zero and primitive. This extends previous results of Abouzaid-Smith (for tori) and Sheridan-Smith (for K3-surfaces) who proved it for particular Kahler-type forms on M. In the K3 case our proof uses dynamical properties of the action of the diffeomorphism group of M on the space of the Kahler-type forms. These properties are obtained using Shahs arithmetic version of Ratners orbit closure theorem.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا