Do you want to publish a course? Click here

Algorithm for the solution of the Dirac equation on digital quantum computers

62   0   0.0 ( 0 )
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

A quantum algorithm that solves the time-dependent Dirac equation on a digital quantum computer is developed and analyzed. The time evolution is performed by an operator splitting decomposition technique that allows for a mapping of the Dirac operator to a quantum walk supplemented by unitary rotation steps in spinor space. Every step of the splitting method is decomposed into sets of quantum gates. It is demonstrated that the algorithm has an exponential speedup over the implementation of the same numerical scheme on a classical computer, as long as certain conditions are satisfied. Finally, an explicit decomposition of this algorithm into elementary gates from a universal set is carried out to determine the resource requirements. It is shown that a proof-of-principle calculation may be possible with actual quantum technologies.



rate research

Read More

Quantum computers will allow calculations beyond existing classical computers. However, current technology is still too noisy and imperfect to construct a universal digital quantum computer with quantum error correction. Inspired by the evolution of classical computation, an alternative paradigm merging the flexibility of digital quantum computation with the robustness of analog quantum simulation has emerged. This universal paradigm is known as digital-analog quantum computing. Here, we introduce an efficient digital-analog quantum algorithm to compute the quantum Fourier transform, a subroutine widely employed in several relevant quantum algorithms. We show that, under reasonable assumptions about noise models, the fidelity of the quantum Fourier transformation improves considerably using this approach when the number of qubits involved grows. This suggests that, in the Noisy Intermediate-Scale Quantum (NISQ) era, hybrid protocols combining digital and analog quantum computing could be a sensible approach to reach useful quantum supremacy.
The Vlasov-Maxwell system of equations, which describes classical plasma physics, is extremely challenging to solve, even by numerical simulation on powerful computers. By linearizing and assuming a Maxwellian background distribution function, we convert the Vlasov-Maxwell system into a Hamiltonian simulation problem. Then for the limiting case of electrostatic Landau damping, we design and verify a quantum algorithm, appropriate for a future error-corrected universal quantum computer. While the classical simulation has costs that scale as $mathcal{O}(N_v t)$ for a velocity grid with $N_v$ grid points and simulation time $t$, our quantum algorithm scales as $mathcal{O}(text{polylog}(N_v) t/delta)$ where $delta$ is the measurement error, and weaker scalings have been dropped. Extensions, including electromagnetics and higher dimensions, are discussed. A quantum computer could efficiently handle a high-resolution, six-dimensional phase-space grid, but the $1/delta$ cost factor to extract an accurate result remains a difficulty. This paper provides insight into the possibility of someday achieving efficient plasma simulation on a quantum computer.
We report results for simulating an effective field theory to compute the binding energy of the deuteron nucleus using a hybrid algorithm on a trapped-ion quantum computer. Two increasingly complex unitary coupled-cluster ansaetze have been used to compute the binding energy to within a few percent for successively more complex Hamiltonians. By increasing the complexity of the Hamiltonian, allowing more terms in the effective field theory expansion and calculating their expectation values, we present a benchmark for quantum computers based on their ability to scalably calculate the effective field theory with increasing accuracy. Our result of $E_4=-2.220 pm 0.179$MeV may be compared with the exact Deuteron ground-state energy $-2.224$MeV. We also demonstrate an error mitigation technique using Richardson extrapolation on ion traps for the first time. The error mitigation circuit represents a record for deepest quantum circuit on a trapped-ion quantum computer.
138 - C. M. Wilson 2018
Noisy intermediate-scale quantum computing devices are an exciting platform for the exploration of the power of near-term quantum applications. Performing nontrivial tasks in such devices requires a fundamentally different approach than what would be used on an error-corrected quantum computer. One such approach is to use hybrid algorithms, where problems are reduced to a parameterized quantum circuit that is often optimized in a classical feedback loop. Here we describe one such hybrid algorithm for machine learning tasks by building upon the classical algorithm known as random kitchen sinks. Our technique, called quantum kitchen sinks, uses quantum circuits to nonlinearly transform classical inputs into features that can then be used in a number of machine learning algorithms. We demonstrate the power and flexibility of this proposal by using it to solve binary classification problems for synthetic datasets as well as handwritten digits from the MNIST database. Using the Rigetti quantum virtual machine, we show that small quantum circuits provide significant performance lift over standard linear classical algorithms, reducing classification error rates from 50% to $<0.1%$, and from $4.1%$ to $1.4%$ in these two examples, respectively. Further, we are able to run the MNIST classification problem, using full-sized MNIST images, on a Rigetti quantum processing unit, finding a modest performance lift over the linear baseline.
Modeling the dynamics of a quantum system connected to the environment is critical for advancing our understanding of complex quantum processes, as most quantum processes in nature are affected by an environment. Modeling a macroscopic environment on a quantum simulator may be achieved by coupling independent ancilla qubits that facilitate energy exchange in an appropriate manner with the system and mimic an environment. This approach requires a large, and possibly exponential number of ancillary degrees of freedom which is impractical. In contrast, we develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits. By combining periodic modulation of the ancilla energies, or spectral combing, with periodic reset operations, we are able to mimic interaction with a large environment and generate thermal states of interacting many-body systems. We evaluate the algorithm by simulating preparation of thermal states of the transverse Ising model. Our algorithm can also be viewed as a quantum Markov chain Monte Carlo (QMCMC) process that allows sampling of the Gibbs distribution of a multivariate model. To demonstrate this we evaluate the accuracy of sampling Gibbs distributions of simple probabilistic graphical models using the algorithm.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا