No Arabic abstract
Modeling the dynamics of a quantum system connected to the environment is critical for advancing our understanding of complex quantum processes, as most quantum processes in nature are affected by an environment. Modeling a macroscopic environment on a quantum simulator may be achieved by coupling independent ancilla qubits that facilitate energy exchange in an appropriate manner with the system and mimic an environment. This approach requires a large, and possibly exponential number of ancillary degrees of freedom which is impractical. In contrast, we develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits. By combining periodic modulation of the ancilla energies, or spectral combing, with periodic reset operations, we are able to mimic interaction with a large environment and generate thermal states of interacting many-body systems. We evaluate the algorithm by simulating preparation of thermal states of the transverse Ising model. Our algorithm can also be viewed as a quantum Markov chain Monte Carlo (QMCMC) process that allows sampling of the Gibbs distribution of a multivariate model. To demonstrate this we evaluate the accuracy of sampling Gibbs distributions of simple probabilistic graphical models using the algorithm.
We investigate the time evolution of an open quantum system described by a Lindblad master equation with dissipation acting only on a part of the degrees of freedom ${cal H}_0$ of the system, and targeting a unique dark state in ${cal H}_0$. We show that, in the Zeno limit of large dissipation, the density matrix of the system traced over the dissipative subspace ${cal H}_0$, evolves according to another Lindblad dynamics, with renormalized effective Hamiltonian and weak effective dissipation. This behavior is explicitly checked in the case of Heisenberg spin chains with one or both boundary spins strongly coupled to a magnetic reservoir. Moreover, the populations of the eigenstates of the renormalized effective Hamiltonian evolve in time according to a classical Markov dynamics. As a direct application of this result, we propose a computationally-efficient exact method to evaluate the nonequilibrium steady state of a general system in the limit of strong dissipation.
We propose a minimal generalization of the celebrated Markov-Chain Monte Carlo algorithm which allows for an arbitrary number of configurations to be visited at every Monte Carlo step. This is advantageous when a parallel computing machine is available, or when many biased configurations can be evaluated at little additional computational cost. As an example of the former case, we report a significant reduction of the thermalization time for the paradigmatic Sherrington-Kirkpatrick spin-glass model. For the latter case, we show that, by leveraging on the exponential number of biased configurations automatically computed by Diagrammatic Monte Carlo, we can speed up computations in the Fermi-Hubbard model by two orders of magnitude.
Fluctuation relations allow for the computation of equilibrium properties, like free energy, from an ensemble of non-equilibrium dynamics simulations. Computing them for quantum systems, however, can be difficult, as performing dynamic simulations of such systems is exponentially hard on classical computers. Quantum computers can alleviate this hurdle, as they can efficiently simulate quantum systems. Here, we present an algorithm utilizing a fluctuation relation known as the Jarzynski equality to approximate free energy differences of quantum systems on a quantum computer. We discuss under which conditions our approximation becomes exact, and under which conditions it serves as a strict upper bound. Furthermore, we successfully demonstrate a proof-of-concept of our algorithm using the transverse field Ising model on a real quantum processor. The free energy is a central thermodynamic property that allows one to compute virtually any equilibrium property of a physical system. Thus, as quantum hardware continues to improve, our algorithm may serve as a valuable tool in a wide range of applications including the construction of phase diagrams, prediction of transport properties and reaction constants, and computer-aided drug design in the future.
Quantum tunneling is a valuable resource exploited by quantum annealers to solve complex optimization problems. Tunneling events also occur during projective quantum Monte Carlo (PQMC) simulations, and in a class of problems characterized by a double-well energy landscape their rate was found to scale linearly with the first energy gap, i.e., even more favorably than in physical quantum annealers, where the rate scales with the gap squared. Here we investigate how a guiding wave function --- which is essential to make many-body PQMC simulations computationally feasible --- affects the tunneling rate. The chosen testbeds are a continuous-space double-well problem, the ferromagnetic quantum Ising chain, and the recently introduced shamrock model. As guiding wave function, we consider an approximate Boltzmann-type ansatz, the numerically-exact ground state of the double-well model, and a neural-network wave function based on a Boltzmann machine. Remarkably, for each ansatz we find the same asymptotic linear scaling of the tunneling rate that was previously found in the PQMC simulations performed without a guiding wave function. We also provide a semiclassical theory for the double-well with exact guiding wave function that explains the observed linear scaling. These findings suggest that PQMC simulations guided by an accurate ansatz represent a valuable benchmark for physical quantum annealers and a potentially competitive quantum-inspired optimization technique.
In this article we propose a novel MCMC method based on deterministic transformations T: X x D --> X where X is the state-space and D is some set which may or may not be a subset of X. We refer to our new methodology as Transformation-based Markov chain Monte Carlo (TMCMC). One of the remarkable advantages of our proposal is that even if the underlying target distribution is very high-dimensional, deterministic transformation of a one-dimensional random variable is sufficient to generate an appropriate Markov chain that is guaranteed to converge to the high-dimensional target distribution. Apart from clearly leading to massive computational savings, this idea of deterministically transforming a single random variable very generally leads to excellent acceptance rates, even though all the random variables associated with the high-dimensional target distribution are updated in a single block. Since it is well-known that joint updating of many random variables using Metropolis-Hastings (MH) algorithm generally leads to poor acceptance rates, TMCMC, in this regard, seems to provide a significant advance. We validate our proposal theoretically, establishing the convergence properties. Furthermore, we show that TMCMC can be very effectively adopted for simulating from doubly intractable distributions. TMCMC is compared with MH using the well-known Challenger data, demonstrating the effectiveness of of the former in the case of highly correlated variables. Moreover, we apply our methodology to a challenging posterior simulation problem associated with the geostatistical model of Diggle et al. (1998), updating 160 unknown parameters jointly, using a deterministic transformation of a one-dimensional random variable. Remarkable computational savings as well as good convergence properties and acceptance rates are the results.