No Arabic abstract
We study the Higgs boson $(h)$ decay to two light jets at the 14 TeV High-Luminosity-LHC (HL-LHC), where a light jet ($j$) represents any non-flavor tagged jet from the observational point of view. The decay mode $hto gg$ is chosen as the benchmark since it is the dominant channel in the Standard Model (SM), but the bound obtained is also applicable to the light quarks $(j=u,d,s)$. We estimate the achievable bounds on the decay branching fractions through the associated production $Vh (V=W^pm,Z)$. Events of the Higgs boson decaying into heavy (tagged) or light (un-tagged) jets are correlatively analyzed. We find that with 3000 fb$^{-1}$ data at the HL-LHC, we should expect approximately $1sigma$ statistical significance on the SM $Vh(gg)$ signal in this channel. This corresponds to a reachable upper bound ${rm BR}(hto jj) leq 4~ {rm BR}^{SM}(hto gg)$ at $95%$ confidence level. A consistency fit also leads to an upper bound ${rm BR}(hto cc) < 15~ {rm BR}^{SM}(hto cc)$ at $95%$ confidence level. The estimated bound may be further strengthened by adopting multiple variable analyses, or adding other production channels.
Investigating the polarization of weak bosons provides an important probe of the scalar and gauge sector of the Standard Model. This can be done in the Higgs decay to four leptons, whose Standard-Model leading-order amplitude enables to generate polarized observables from unpolarized ones via a fully-differential reweighting method. We study the Z-boson polarization from the decay of a Higgs boson produced in association with two jets, both in the gluon-fusion and in the vector-boson fusion channel. We also address the possibility of extending the results of this work to higher orders in perturbation theory.
We summarize the possible processes which may be used to search for a Higgs boson, of mass in the range 114-130 GeV, at the LHC. We discuss, in detail, two processes with rapidity gaps: exclusive Higgs production with tagged outgoing protons and production by Weak Boson Fusion, in each case taking H -> bbbar as the signal. We make an extensive study of all possible bbbar backgrounds, and discuss the relevant experimental issues. We emphasize the special features of these signals, and of their background processes, and show that they could play an important role in identifying a light Higgs boson at the LHC.
We investigate possible scenarios of light-squark production at the LHC as a new mechanism to produce Higgs bosons in association with jets. The study is motivated by the SUSY search for H+jets events, performed by the CMS collaboration on 8 and 13 TeV data using the razor variables. Two simplified models are proposed to interpret the observations in this search. The constraint from Run I and the implications for Run II and beyond are discussed.
If the fundamental Planck scale is near a TeV, then TeV scale black holes should be produced in proton-proton collisions at the LHC where sqrt{s} = 14 TeV. As the temperature of the black holes can be ~ 1 TeV we also expect production of Higgs bosons from them via Hawking radiation. This is a different production mode for the Higgs boson, which would normally be produced via direct pQCD parton fusion processes. In this paper we compare total cross sections and transverse momentum distributions dsigma/dp_T for Higgs production from black holes at the LHC with those from direct parton fusion processes at next-to-next-to-leading order and next-to-leading order respectively. We find that the Higgs production from black holes can be larger or smaller than the direct pQCD production depending upon the Planck mass and black hole mass. We also find that dsigma/dp_T of Higgs production from black holes increases as a function of p_T which is in sharp contrast with the pQCD predictions where dsigma/dp_T decreases so we suggest that the measurement of an increase in dsigma/dp_T as p_T increases for Higgs (or any other heavy particle) production can be a useful signature for black holes at the LHC.
The next-to-minimal supersymmetric standard model (NMSSM) with an extended Higgs sector offers one of the Higgs boson as the Standard model (SM) like Higgs with a mass around 125 GeV along with other Higgs bosons with lighter and heavier masses and not excluded by any current experiments. At the LHC, phenomenology of these non SM like Higgs bosons is very rich and considerably different from the other supersymmetric models. In this work, assuming one of the Higgs bosons to be the SM like, we revisit the mass spectrum and couplings of non SM like Higgs bosons taking into consideration all existing constraints and identify the relevant region of parameter space. The discovery potential of these non SM like Higgs bosons, apart from their masses, is guided by their couplings with gauge bosons and fermions which are very much parameter space sensitive. We evaluate the rates of productions of these non SM like Higgs bosons at the LHC for a variety of decay channels in the allowed region of the parameter space. Although bb, {tau}{tau} decay modes appear to be the most promising, it is observed that for a substantial region of parameter space the two-photon decay mode has a remarkably large rate. In this work we emphasize that this diphoton mode can be exploited to find the NMSSM Higgs signal and can also be potential avenue to distinguish the NMSSM from the MSSM. In addition, we discuss briefly the various detectable signals of these non SM Higgs bosons at the LHC.