Do you want to publish a course? Click here

New ATCA, ALMA and VISIR observations of the candidate LBV SK-67266 (S61): the nebular mass from modelling 3D density distributions

53   0   0.0 ( 0 )
 Added by Claudia Agliozzo
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present new observations of the nebula around the Magellanic candidate Luminous Blue Variable S61. These comprise high-resolution data acquired with the Australia Telescope Compact Array (ATCA), the Atacama Large Millimetre/Submillimetre Array (ALMA), and VISIR at the Very Large Telescope (VLT). The nebula was detected only in the radio, up to 17 GHz. The 17 GHz ATCA map, with 0.8 arcsec resolution, allowed a morphological comparison with the H$alpha$ Hubble Space Telescope image. The radio nebula resembles a spherical shell, as in the optical. The spectral index map indicates that the radio emission is due to free-free transitions in the ionised, optically thin gas, but there are hints of inhomogeneities. We present our new public code RHOCUBE to model 3D density distributions, and determine via Bayesian inference the nebulas geometric parameters. We applied the code to model the electron density distribution in the S61 nebula. We found that different distributions fit the data, but all of them converge to the same ionised mass, ~0.1 $rm Modot$, which is an order of magnitude smaller than previous estimates. We show how the nebula models can be used to derive the mass-loss history with high-temporal resolution. The nebula was probably formed through stellar winds, rather than eruptions. From the ALMA and VISIR non-detections, plus the derived extinction map, we deduce that the infrared emission observed by space telescopes must arise from extended, diffuse dust within the ionised region.

rate research

Read More

We present and discuss new long-slit Echelle spectra of the LMC LBV candidate Sk-69 279 and put them in context with previous images and spectra. While at first glance a simple spherically expanding symmetric shell, we find a considerably more complex morphology and kinematics. The spectra indicate that morphologically identified deviations from sphericity are outflows of faster material out of the main body of Sk-69 279. The morphological as well as the kinematic similarity with other LBV nebulae makes it likely that Sk-69 279 is an LBV candidate, indeed, and poses the question in how far outflows out of expanding LBV nebulae are a general property of such nebulae--at least during some phases of their evolutions.
Luminous Blue Variable (LBV) stars are evolved massive objects, previous to core-collapse supernova. LBVs are characterized by photometric and spectroscopic variability, produced by strong and dense winds, mass-loss events and very intense UV radiation. LBVs strongly disturb their surroundings by heating and shocking, and produce important amounts of dust. The study of the circumstellar material is therefore crucial to understand how these massive stars evolve, and also to characterize their effects onto the interstellar medium. The versatility of NIKA2 is a key in providing simultaneous observations of both the stellar continuum and the extended, circumstellar contribution. The NIKA2 frequencies (150 and 260 GHz) are in the range where thermal dust and free-free emission compete, and hence NIKA2 has the capacity to provide key information about the spatial distribution of circumstellar ionized gas, warm dust and nearby dark clouds; non-thermal emission is also possible even at these high frequencies. We show the results of the first NIKA2 survey towards five LBVs. We detected emission from four stars, three of them immersed in tenuous circumstellar material. The spectral indices show a complex distribution and allowed us to separate and characterize different components. We also found nearby dark clouds, with spectral indices typical of thermal emission from dust. Spectral indices of the detected stars are negative and hard to be explained only by free-free processes. In one of the sources, G79.29+0.46, we also found a strong correlation of the 1mm and 2mm continuum emission with respect to nested molecular shells at 0.1 pc from the LBV. The spectral index in this region clearly separates four components: the LBV star, a bubble characterized by free-free emission, and a shell interacting with a nearby infrared dark cloud.
The luminous blue variable (LBV) phase is a poorly understood stage in the evolution of high mass stars, characterized for its brevity and instability. The surroundings of LBV stars are excellent test beds to study their dense stellar winds and eruptive mass-loss events. Aiming to improve our knowledge of the LBV phase, we observed the J=1-0 and J=2-1 lines of CO and $^{13}$CO in a field of 1.5x1.5 around the recently identified candidate LBV MGE 042.0787+00.5084, using the IRAM 30-m radio telescope. We report the first detection of molecular emission associated with this source, tracing a structure with an evident circumstellar distribution. Morphology and kinematics of the gas can be explained by an expanding torus, a structure that may have originated from stellar ejecta or the action of stellar winds onto the parent molecular cloud. We derive the physical properties of the gas by means of LTE and non-LTE line modelling, obtaining densities of H$_2$ in the order of 10$^3$ cm$^{-3}$ and kinetic temperatures below 100 K. In addition, we build a kinematic model to reproduce the structure and observed velocity fields of the gas, which is in good agreement with the observations. We estimate a total molecular gas mass of 0.6$pm$0.1 Msun and a dynamical age of 6$times$10$^4$ years, leading to an average mass-loss rate of 0.8-1.2$times$10$^{-5}$ Msun yr$^{-1}$.
MCA-1B (also called UIT003) is a luminous hot star in the western outskirts of M33, classified over 20yr ago with a spectral type of Ofpe/WN9 and identified then as a candidate luminous blue variable (LBV). Palomar Transient Factory data reveal that this star brightened in 2010, with a light curve resembling that of the classic LBV star AFAnd in M31. Other Ofpe/WN9 stars have erupted as LBVs, but MCA-1B was unusual because it remained hot. It showed a WN-type spectrum throughout its eruption, whereas LBVs usually get much cooler. MCA-1B showed an almost four-fold increase in bolometric luminosity and a doubling of its radius, but its temperature stayed around 29kK. As it faded, it shifted to even hotter temperatures, exhibiting a WN7/WN8-type spectrum, and doubling its wind speed. MCA-1B is reminiscent of some supernova impostors, and its location resembles the isolated environment of SN 2009ip. It is most similar to HD5980 (in the SMC) and GR 290 (also in M33). Whereas these two LBVs exhibited B-type spectra in eruption, MCA-1B is the first clear case where a Wolf-Rayet (WR) spectrum persisted at all times. Together, MCA-1B, HD 5980, and GR 290 constitute a class of WN-type LBVs, distinct from S Doradus LBVs. They are most interesting in the context of LBVs at low metallicity, a possible post-LBV/WR transition in binaries, and as likely Type~Ibn supernova progenitors.
156 - R. Visser 2011
Aims. Young stars interact vigorously with their surroundings, as evident from the highly rotationally excited CO (up to Eup=4000 K) and H2O emission (up to 600 K) detected by the Herschel Space Observatory in embedded low-mass protostars. Our aim is to construct a model that reproduces the observations quantitatively, to investigate the origin of the emission, and to use the lines as probes of the various heating mechanisms. Methods. The model consists of a spherical envelope with a bipolar outflow cavity. Three heating mechanisms are considered: passive heating by the protostellar luminosity, UV irradiation of the outflow cavity walls, and C-type shocks along the cavity walls. Line fluxes are calculated for CO and H2O and compared to Herschel data and complementary ground-based data for the protostars NGC1333 IRAS2A, HH 46 and DK Cha. The three sources are selected to span a range of evolutionary phases and physical characteristics. Results. The passively heated gas in the envelope accounts for 3-10% of the CO luminosity summed over all rotational lines up to J=40-39; it is best probed by low-J CO isotopologue lines such as C18O 2-1 and 3-2. The UV-heated gas and the C-type shocks, probed by 12CO 10-9 and higher-J lines, contribute 20-80% each. The model fits show a tentative evolutionary trend: the CO emission is dominated by shocks in the youngest source and by UV-heated gas in the oldest one. This trend is mainly driven by the lower envelope density in more evolved sources. The total H2O line luminosity in all cases is dominated by shocks (>99%). The exact percentages for both species are uncertain by at least a factor of 2 due to uncertainties in the gas temperature as function of the incident UV flux. However, on a qualitative level, both UV-heated gas and C-type shocks are needed to reproduce the emission in far-infrared rotational lines of CO and H2O.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا