No Arabic abstract
Laser control of Open Quantum Systems (OQS) is a challenging issue as compared to its counterpart in isolated small size molecules, basically due to very large numbers of degrees of freedom to be accounted for. Such a control aims at appropriately optimizing decoherence processes of a central two-level system (a given vibrational mode, for instance) towards its environmental bath (including, for instance, all other normal modes). A variety of applications could potentially be envisioned, either to preserve the central system from decaying (long duration molecular alignment or orientation, qubit decoherence protection) or, to speed up the information flow towards the bath (efficient charge or proton transfers in long chain organic compounds). Achieving such controls require some quantitative measures of decoherence in relation with memory effects in the bath response, actually given by the degree of non-Markovianity. Characteristic decoherence rates of a Spin-Boson model are calculated using a Nakajima-Zwanzig type master equation with converged HEOM expansion for the memory kernel. It is shown that, by adequately tuning the two-level transition frequency through a controlled Stark shift produced by an external laser field, non-Markovianity can be enhanced in a continuous way leading to a first attempt towards the control of OQS.
Quantum technology resorts to efficient utilization of quantum resources to realize technique innovation. The systems are controlled such that their states follow the desired manners to realize different quantum protocols. However, the decoherence caused by the system-environment interactions causes the states deviating from the desired manners. How to protect quantum resources under the coexistence of active control and passive decoherence is of significance. Recent studies have revealed that the decoherence is determined by the feature of the system-environment energy spectrum: Accompanying the formation of bound states in the energy spectrum, the decoherence can be suppressed. It supplies a guideline to control decoherence. Such idea can be generalized to systems under periodic driving. By virtue of manipulating Floquet bound states in the quasienergy spectrum, coherent control via periodic driving dubbed as Floquet engineering has become a versatile tool not only in controlling decoherence, but also in artificially synthesizing exotic topological phases. We will review the progress on quantum control in open and periodically driven systems. Special attention will be paid to the distinguished role played by the bound states and their controllability via periodic driving in suppressing decoherence and generating novel topological phases.
We consider a composite open quantum system consisting of a fast subsystem coupled to a slow one. Using the time-scale separation, we develop an adiabatic elimination technique to derive at any order the reduced model describing the slow subsystem. The method, based on an asymptotic expansion and geometric singular perturbation theory, ensures the physical interpretation of the reduced second-order model by giving the reduced dynamics in a Lindblad form and the state reduction in Kraus map form. We give explicit second-order formulas for Hamiltonian or cascade coupling between the two subsystems. These formulas can be used to engineer, via a careful choice of the fast subsystem, the Hamiltonian and Lindbald operators governing the dissipative dynamics of the slow subsystem.
We analyze quantum state-transfer optimization within hybrid open systems, from a noisy (write-in) qubit to its quiet counterpart (storage qubit). Intriguing interplay is revealed between our ability to avoid bath-induced errors that profoundly depend on the bath-memory time and the limitations imposed by leakage out of the operational subspace. Counterintuitively, under no circumstances is the fastest transfer optimal (for a given transfer energy).
Novel concepts, perspectives and challenges in measuring and controlling an open quantum system via sequential schemes are shown. We discuss how similar protocols, relying both on repeated quantum measurements and dynamical decoupling control pulses, can allow to: (i) Confine and protect quantum dynamics from decoherence in accordance with the Zeno physics. (ii) Analytically predict the probability that a quantum system is transferred into a target quantum state by means of stochastic sequential measurements. (iii) Optimally reconstruct the spectral density of environmental noise sources by orthogonalizing in the frequency domain the filter functions driving the designed quantum-sensor. The achievement of these tasks will enhance our capability to observe and manipulate open quantum systems, thus bringing advances to quantum science and technologies.
We propose a new quantum numerical scheme to control the dynamics of a quantum walker in a two dimensional space-time grid. More specifically, we show how, introducing a quantum memory for each of the spatial grid, this result can be achieved simply by acting on the initial state of the whole system, and therefore can be exactly controlled once for all. As example we prove analytically how to encode in the initial state any arbitrary walkers mean trajectory and variance. This brings significantly closer the possibility of implementing dynamically interesting physics models on medium term quantum devices, and introduces a new direction in simulating aspects of quantum field theories (QFTs), notably on curved manifold.