Do you want to publish a course? Click here

Rearrangement of valence neutrons in the neutrinoless double-$beta$ decay of $^{136}$Xe

67   0   0.0 ( 0 )
 Added by Benjamin Kay
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

A quantitative description of the change in ground-state neutron occupancies between $^{136}$Xe and $^{136}$Ba, the initial and final state in the neutrinoless double-$beta$ decay of $^{136}$Xe, has been extracted from precision measurements of the cross sections of single-neutron adding and -removing reactions. Comparisons are made to recent theoretical calculations of the same properties using various nuclear-structure models. These are the same calculations used to determine the magnitude of the nuclear matrix elements for the process, which at present disagree with each other by factors of 2 or 3. The experimental neutron occupancies show some disagreement with the theoretical calculations.



rate research

Read More

The change in the configuration of valence protons between the initial and final states in the neutrinoless double-$beta$ decay of $^{130}$Te $rightarrow$ $^{130}$Xe and of $^{136}$Xe $rightarrow$ $^{136}$Ba has been determined by measuring the cross sections of the ($d$,$^3$He) reaction with 101-MeV deuterons. Together with our recent determination of the relevant neutron configurations involved in the process, a quantitative comparison with the latest shell-model and interacting-boson-model calculations reveals significant discrepancies. These are the same calculations used to determine the nuclear matrix elements governing the rate of neutrinoless double-$beta$ decay in these systems.
We report on a search for neutrinoless double-beta decay of $^{136}$Xe with EXO-200. No signal is observed for an exposure of 32.5 kg-yr, with a background of ~1.5 x 10^{-3} /(kg yr keV) in the $pm 1sigma$ region of interest. This sets a lower limit on the half-life of the neutrinoless double-beta decay $T_{1/2}^{0 ubetabeta}$($^{136}$Xe) > 1.6 x 10$^{25}$ yr (90% CL), corresponding to effective Majorana masses of less than 140-380 meV, depending on the matrix element calculation.
We report the observation of two-neutrino double-beta decay in Xe-136 with T_1/2 = 2.11 +- 0.04 (stat.) +- 0.21 (sys.) x 10^21 yr. This second order process, predicted by the Standard Model, has been observed for several nuclei but not for Xe-136. The observed decay rate provides new input to matrix element calculations and to the search for the more interesting neutrino-less double-beta decay, the most sensitive probe for the existence of Majorana particles and the measurement of the neutrino mass scale.
The DARWIN observatory is a proposed next-generation experiment to search for particle dark matter and for the neutrinoless double beta decay of $^{136}$Xe. Out of its 50$,$t total natural xenon inventory, 40$,$t will be the active target of a time projection chamber which thus contains about 3.6 t of $^{136}$Xe. Here, we show that its projected half-life sensitivity is $2.4times10^{27},$yr, using a fiducial volume of 5t of natural xenon and 10$,$yr of operation with a background rate of less than 0.2$~$events/(t$cdot$yr) in the energy region of interest. This sensitivity is based on a detailed Monte Carlo simulation study of the background and event topologies in the large, homogeneous target. DARWIN will be comparable in its science reach to dedicated double beta decay experiments using xenon enriched in $^{136}$Xe.
We used a high-resolution magnetic spectrograph to study neutron pair-correlated $0^+$ states in $^{136}$Ba, produced via the $^{138}{rm Ba}(p,t)$ reaction. In conjunction with state-of-the-art shell model calculations, these data benchmark part of the dominant Gamow-Teller component of the nuclear matrix element (NME) for $^{136}$Xe neutrinoless double beta ($0 ubetabeta$) decay. We demonstrate for the first time an evaluation of part of a $0 ubetabeta$ decay NME by use of an experimental observable, presenting a new avenue of approach for more accurate calculations of $0 ubetabeta$ decay matrix elements.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا