Do you want to publish a course? Click here

DUSTiNGS III: Distribution of Intermediate-Age and Old Stellar Populations in Disks and Outer Extremities of Dwarf Galaxies

76   0   0.0 ( 0 )
 Added by Kristen McQuinn
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have traced the spatial distributions of intermediate-age and old stars in nine dwarf galaxies in the distant parts of the Local Group, using multi-epoch 3.6 and 4.5 micron data from the DUST in Nearby Galaxies with Spitzer (DUSTiNGS) survey. Using complementary optical imaging from the Hubble Space Telescope, we identify the tip of the red giant branch (TRGB) in the 3.6 micron photometry, separating thermally-pulsating asymptotic giant branch (TP-AGB) stars from the larger red giant branch (RGB) populations. Unlike the constant TRGB in the I-band, at 3.6 micron the TRGB magnitude varies by ~0.7 mag, making it unreliable as a distance indicator. The intermediate-age and old stars are well mixed in two-thirds of the sample with no evidence of a gradient in the ratio of the intermediate-age to old stellar populations outside the central ~1-2. Variable AGB stars are detected in the outer extremities of the galaxies, indicating that chemical enrichment from these dust-producing stars may occur in the outer regions of galaxies with some frequency. Theories of structure formation in dwarf galaxies must account for the lack of radial gradients in intermediate-age populations and the presence of these stars in the outer extremities of dwarfs. Finally, we identify unique features in individual galaxies, such as extended tidal features in Sex A and Sag DIG and a central concentration of AGB stars in the inner regions of NGC 185 and NGC 147.



rate research

Read More

120 - M.Fabrizio , G.Bono , M.Nonino 2016
We present new radial velocity (RV) measurements of old (horizontal branch) and intermediate-age (red clump) stellar tracers in the Carina dwarf spheroidal. They are based on more than 2,200 low-resolution spectra collected with VIMOS at VLT. The targets are faint (20<V<21.5 mag), but the accuracy at the faintest limit is <9 kms-1. These data were complemented with RV measurements either based on spectra collected with FORS2 and FLAMES/GIRAFFE at VLT or available in the literature. We ended up with a sample of 2748 stars and among them 1389 are candidate Carina stars. We found that the intermediate-age stellar component shows a well defined rotational pattern around the minor axis. The western and the eastern side of the galaxy differ by +5 and -4 km s-1 when compared with the main RV peak. The old stellar component is characterized by a larger RV dispersion and does not show evidence of RV pattern. We compared the observed RV distribution with N-body simulations for a former disky dwarf galaxy orbiting a giant MilkyWay-like galaxy (Lokas et al. 2015). We rotated the simulated galaxy by 60 degrees with respect to the major axis, we kept the observer on orbital plane of the dwarf and extracted a sample of stars similar to the observed one. Observed and predicted Vrot/{sigma} ratios across the central regions are in remarkable agreement. This evidence indicates that Carina was a disky dwarf galaxy that experienced several strong tidal interactions with the Milky Way. Owing to these interactions, Carina transformed from a disky to a prolate spheroid and the rotational velocity transformed into random motions.
Although mergers and starbursts are often invoked in the discussion of QSO activity in the context of galaxy evolution, several studies have questioned their importance or even their presence in QSO host galaxies. Accordingly, we are conducting a study of z~0.2 QSO host galaxies previously classified as passively evolving elliptical galaxies. We present deep Keck LRIS spectroscopy of a sample of 15 hosts and model their stellar absorption spectra using stellar synthesis models. The high S/N of our spectra allow us to break various degeneracies that arise from different combinations of models, varying metallicities, and contamination from QSO light. We find that none of the host spectra can be modeled by purely old stellar populations and that the majority of the hosts (14/15) have a substantial contribution from intermediate-age populations with ages ranging from 0.7 to 2.4 Gyr. An average host spectrum is strikingly well fit by a combination of an old population and a 2.1 (+0.5, -0.7) Gyr population. The morphologies of the host galaxies suggest that these aging starbursts were induced during the early stages of the mergers that resulted in the elliptical-shaped galaxies that we observe. The current AGN activity likely corresponds to the late episodes of accretion predicted by numerical simulations, which occur near the end of the mergers, whereas earlier episodes may be more difficult to observe due to obscuration. Our off-axis observations prevent us from detecting any current star formation or young stellar populations that may be present in the central few kiloparsecs.
We investigate recent star formation in the extended ultraviolet (XUV) disks of five nearby galaxies (NGC 0628, NGC 2090, NGC 2841, NGC 3621, and NGC 5055) using a long wavelength baseline comprised of ultraviolet and mid-infrared imaging from the Galaxy Evolution Explorer and the Spitzer Infrared Array Camera. We identify 229 unresolved stellar complexes across targeted portions of their XUV disks and utilize spectral energy distribution fitting to measure their stellar ages and masses through comparison with Starburst99 population synthesis models of instantaneous burst populations. We find that the median age of outer disk associations in our sample is ~100 Myr with a large dispersion that spans the entire range of our models (1 Myr-1 Gyr). This relatively evolved state for most associations addresses the observed dearth of Halpha emission in some outer disks, as Halpha can only be observed in star forming regions younger than ~10 Myr. The large age dispersion is robust against variations in extinction (in the range E(B-V)=0-0.3 mag) and variations in the upper end of the stellar Initial Mass Function (IMF). In particular, we demonstrate that the age dispersion is insensitive to steepening of the IMF, up to extreme slopes.
Within the framework of the DustPedia project we investigate the properties of cosmic dust and its interaction with the stellar radiation (originating from different stellar populations) for 814 galaxies in the nearby Universe, all observed by the Herschel Space Observatory. We take advantage of the widely used galaxy SED fitting code CIGALE, properly adapted to include the state-of-the-art dust model THEMIS. Using the DustPedia photometry we determine the physical properties of the galaxies, such as, the dust and stellar mass, the star-formation rate, the bolometric luminosity as well as the unattenuated and the absorbed by dust stellar light, for both the old (> 200 Myr) and young (<= 200 Myr) stellar populations. We show how the mass of stars, dust, and atomic gas, as well as the star-formation rate and the dust temperature vary between galaxies of different morphologies and provide recipes to estimate these parameters given their Hubble stage (T). We find a mild correlation between the mass fraction of the small a-C(:H) grains with the specific star-formation rate. On average, young stars are very efficient in heating the dust, with absorption fractions reaching as high as ~77% of the total, unattenuated luminosity of this population. On the other hand, the maximum absorption fraction of old stars is ~24%. Dust heating in early-type galaxies is mainly due to old stars, up to a level of ~90%. Young stars progressively contribute more for `typical spiral galaxies and they become the dominant source of dust heating for Sm type and irregular galaxies, donating up to ~60% of their luminosity to this purpose. Finally, we find a strong correlation of the dust heating fraction by young stars with morphology and the specific star-formation rate.
Studying the stellar kinematics of galaxies is a key tool in the reconstruction of their evolution. However, the current measurements of the stellar kinematics are complicated by several factors, including dust extinction and the presence of multiple stellar populations. We use integral field spectroscopic data of four galaxies from the TIMER survey to explore and compare the kinematics measured in different spectral regions that are sensitive to distinct stellar populations. We derive the line-of-sight velocity and velocity dispersion of both a young (<2 Gyr) and an old stellar population from the spectral regions around the H$beta$ line and the Ca II Triplet. In addition we obtain colour excess, mean age, and metallicity. We report a correlation of the colour excess with the difference in the kinematic parameters of the H$beta$ line and the Ca II Triplet range, which are dominated by young and old stellar populations, respectively. Young stellar populations, located primarily in nuclear rings, have higher velocity dispersions than old ones. These differences in the rings are typically 10 km/s in velocity dispersion, but up to a mean value of 24 km/s in the most extreme case. Trends with age exist in the nuclear rings but are less significant than those with dust extinction. We report different degrees of correlation of these trends among the galaxies in the sample, which are related to the size of the Voronoi bins in their rings. No clear trends for the difference of line-of-sight velocity are observed. The absence of these trends can be explained as a consequence of the masking process of the H$beta$ line during the kinematic extraction, as confirmed by dedicated simulations. Our study demonstrates that kinematic differences caused by different stellar populations can be identified in the central regions of nearby galaxies even from intermediate resolution spectroscopy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا