Do you want to publish a course? Click here

Old and young stellar populations in DustPedia galaxies and their role in dust heating

204   0   0.0 ( 0 )
 Added by Angelos Nersesian
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Within the framework of the DustPedia project we investigate the properties of cosmic dust and its interaction with the stellar radiation (originating from different stellar populations) for 814 galaxies in the nearby Universe, all observed by the Herschel Space Observatory. We take advantage of the widely used galaxy SED fitting code CIGALE, properly adapted to include the state-of-the-art dust model THEMIS. Using the DustPedia photometry we determine the physical properties of the galaxies, such as, the dust and stellar mass, the star-formation rate, the bolometric luminosity as well as the unattenuated and the absorbed by dust stellar light, for both the old (> 200 Myr) and young (<= 200 Myr) stellar populations. We show how the mass of stars, dust, and atomic gas, as well as the star-formation rate and the dust temperature vary between galaxies of different morphologies and provide recipes to estimate these parameters given their Hubble stage (T). We find a mild correlation between the mass fraction of the small a-C(:H) grains with the specific star-formation rate. On average, young stars are very efficient in heating the dust, with absorption fractions reaching as high as ~77% of the total, unattenuated luminosity of this population. On the other hand, the maximum absorption fraction of old stars is ~24%. Dust heating in early-type galaxies is mainly due to old stars, up to a level of ~90%. Young stars progressively contribute more for `typical spiral galaxies and they become the dominant source of dust heating for Sm type and irregular galaxies, donating up to ~60% of their luminosity to this purpose. Finally, we find a strong correlation of the dust heating fraction by young stars with morphology and the specific star-formation rate.



rate research

Read More

Studying the stellar kinematics of galaxies is a key tool in the reconstruction of their evolution. However, the current measurements of the stellar kinematics are complicated by several factors, including dust extinction and the presence of multiple stellar populations. We use integral field spectroscopic data of four galaxies from the TIMER survey to explore and compare the kinematics measured in different spectral regions that are sensitive to distinct stellar populations. We derive the line-of-sight velocity and velocity dispersion of both a young (<2 Gyr) and an old stellar population from the spectral regions around the H$beta$ line and the Ca II Triplet. In addition we obtain colour excess, mean age, and metallicity. We report a correlation of the colour excess with the difference in the kinematic parameters of the H$beta$ line and the Ca II Triplet range, which are dominated by young and old stellar populations, respectively. Young stellar populations, located primarily in nuclear rings, have higher velocity dispersions than old ones. These differences in the rings are typically 10 km/s in velocity dispersion, but up to a mean value of 24 km/s in the most extreme case. Trends with age exist in the nuclear rings but are less significant than those with dust extinction. We report different degrees of correlation of these trends among the galaxies in the sample, which are related to the size of the Voronoi bins in their rings. No clear trends for the difference of line-of-sight velocity are observed. The absence of these trends can be explained as a consequence of the masking process of the H$beta$ line during the kinematic extraction, as confirmed by dedicated simulations. Our study demonstrates that kinematic differences caused by different stellar populations can be identified in the central regions of nearby galaxies even from intermediate resolution spectroscopy.
We use new Herschel multi-band imaging of the Andromeda galaxy to analyze how dust heating occurs in the central regions of galaxy spheroids that are essentially devoid of young stars. We construct a dust temperature map of M31 through fitting modified blackbody SEDs to the Herschel data, and find that the temperature within 2 kpc rises strongly from the mean value in the disk of 17 pm 1K to sim35K at the centre. UV to near-IR imaging of the central few kpc shows directly the absence of young stellar populations, delineates the radial profile of the stellar density, and demonstrates that even the near-UV dust extinction is optically thin in M31s bulge. This allows the direct calculation of the stellar radiation heating in the bulge, Uast(r), as a function of radius. The increasing temperature profile in the centre matches that expected from the stellar heating, i.e. that the dust heating and cooling rates track each other over nearly two orders of magnitude in Uast. The modelled dust heating is in excess of the observed dust temperatures, suggesting that it is more than sufficient to explain the observed IR emission. Together with the wavelength dependent absorption cross section of the dust, this demonstrates directly that it is the optical, not UV, radiation that sets the heating rate. This analysis shows that neither young stellar populations nor stellar near-UV radiation are necessary to heat dust to warm temperatures in galaxy spheroids. Rather, it is the high densities of Gyr-old stellar populations that provide a sufficiently strong diffuse radiation field to heat the dust. To the extent which these results pertain to the tenuous dust found in the centres of early-type galaxies remains yet to be explored.
Aims: We compare the far-infrared to sub-millimetre dust emission properties measured in high Galactic latitude cirrus with those determined in a sample of 204 late-type DustPedia galaxies. The aim is to verify if it is appropriate to use Milky Way dust properties to derive dust masses in external galaxies. Methods: We used Herschel observations and atomic and molecular gas masses to estimate the disc-averaged dust emissivity at 250 micrometres, and from this, the absorption cross section per H atom and per dust mass. The emissivity requires one assumption, which is the CO-to-H_2 conversion factor, and the dust temperature is additionally required for the absorption cross section per H atom; yet another constraint on the dust-to-hydrogen ratio D/H, depending on metallicity, is required for the absorption cross section dust mass. Results: We find epsilon(250) = 0.82 +/- 0.07 MJy sr^-1 (1E20 H cm^-2)^-1 for galaxies with 4 < F(250)/F(500) < 5. This depends only weakly on the adopted CO-to-H_2 conversion factor. The value is almost the same as that for the Milky Way at the same colour ratio. Instead, for F(250)/F(500) > 6, epsilon(250) is lower than predicted by its dependence on the heating conditions. The reduction suggests a variation in dust emission properties for spirals of earlier type, higher metallicity, and with a higher fraction of molecular gas. When the standard emission properties of Galactic cirrus are used for these galaxies, their dust masses might be underestimated by up to a factor of two. Values for the absorption cross sections at the Milky Way metallicity are also close to those of the cirrus. Mild trends of the absorption cross sections with metallicity are found, although the results depend on the assumptions made.
Most radiative transfer models assume that dust in spiral galaxies is distributed exponentially. In this paper our goal is to verify this assumption by analysing the two-dimensional large-scale distribution of dust in galaxies from the DustPedia sample. For this purpose, we make use of Herschel imaging in five bands, from 100 to 500{mu}m, in which the cold dust constituent is primarily traced and makes up the bulk of the dust mass in spiral galaxies. For a subsample of 320 disc galaxies, we successfully perform a simultaneous fitting with a single Sersic model of the Herschel images in all five bands using the multiband modelling code GALFITM. We report that the Sersic index $n$, which characterises the shape of the Sersic profile, lies systematically below 1 in all Herschel bands and is almost constant with wavelength. The average value at 250{mu}m is $0.67pm0.37$ (187 galaxies are fitted with $n_{250}leq0.75$, 87 galaxies have $0.75<n_{250}leq1.25$, and 46 - with $n_{250}>1.25$). Most observed profiles exhibit a depletion in the inner region (at $r<0.3-0.4$ of the optical radius $r_{25}$ ) and are more or less exponential in the outer part. We also find breaks in the dust emission profiles at longer distances $(0.5-0.6)r_{25}$ which are associated with the breaks in the optical and near-infrared. We assume that the observed deficit of dust emission in the inner galaxy region is related to the depression in the radial profile of the HI surface density in the same region because the atomic gas reaches high enough surface densities there to be transformed into molecular gas. If a galaxy has a triggered star formation in the inner region (for example, because of a strong bar instability, which transfers the gas inwards to the centre, or a pseudobulge formation), no depletion or even an excess of dust emission in the centre is observed.
Determining the properties of old stellar populations (those with age >1 Gyr) has long involved the comparison of their integrated light, either in the form of photometry or spectroscopic indexes, with empirical or synthetic templates. Here we reevaluate the properties of old stellar populations using a new set of stellar population synthesis models, designed to incorporate the effects of binary stellar evolution pathways as a function of stellar mass and age. We find that single-aged stellar population models incorporating binary stars, as well as new stellar evolution and atmosphere models, can reproduce the colours and spectral indices observed in both globular clusters and quiescent galaxies. The best fitting model populations are often younger than those derived from older spectral synthesis models, and may also lie at slightly higher metallicities.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا