Do you want to publish a course? Click here

Integration over families of Lagrangian submanifolds in BV formalism

104   0   0.0 ( 0 )
 Added by Andrei Mikhailov
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

Gauge fixing is interpreted in BV formalism as a choice of Lagrangian submanifold in an odd symplectic manifold. A natural construction defines an integration procedure on families of Lagrangian submanifolds. In string perturbation theory, the moduli space integrals of higher genus amplitudes can be interpreted in this way. We discuss the role of gauge symmetries in this construction. We derive the conditions which should be imposed on gauge symmetries for the consistency of our integration procedure. We explain how these conditions behave under the deformations of the worldsheet theory. In particular, we show that integrated vertex operator is actually an inhomogeneous differential form on the space of Lagrangian submanifolds.



rate research

Read More

50 - Peter M. Lavrov 2019
In present paper a quantization scheme proposed recently by Morris (arXiv:1806.02206[hep-th]) is analyzed. This method is based on idea to combine the renormalization group with the BV-formalism in an unique quantization procedure. It is shown that the BV-formalism and the new method should be considered as independent approaches to quantization of gauge systems both provided by global supersymmetry.
61 - Andrei Mikhailov 2020
Differrential Graded Lie Algebra Dg was previously introduced in the context of current algebras. We show that under some conditions, the problem of constructing equivariantly closed form from closed invariant form is reduces to construction of a representation of Dg. This includes equivariant BV formalism. In particular, an analogue of intertwiner between Weil and Cartan models allows to clarify the general relation between integrated and unintegrated vertex operators in string worldsheet theory.
Studying the gauge-invariant renormalizability of four-dimensional Yang-Mills theory using the background field method and the BV-formalism, we derive a classical master-equation homogeneous with respect to the antibracket by introducing antifield partners to the background fields and parameters. The constructed model can be renormalized by the standard method of introducing counterterms. This model does not have (exact) multiplicative renormalizability but it does have this property in the physical sector (quasimultiplicative renormalizability).
In the framework of $Sp(2)$ extended Lagrangian field-antifield BV formalism we study systematically the role of finite field-dependent BRST-BV transformations. We have proved that the Jacobian of a finite BRST-BV transformation is capable of generating arbitrary finite change of the gauge-fixing function in the path integral.
We show how to derive asymptotic charges for field theories on manifolds with asymptotic boundary, using the BV-BFV formalism. We also prove that the conservation of said charges follows naturally from the vanishing of the BFV boundary action, and show how this construction generalises Noethers procedure. Using the BV-BFV viewpoint, we resolve the controversy present in the literature, regarding the status of large gauge transformation as symmetries of the asymptotic structure. We show that even though the symplectic structure at the asymptotic boundary is not preserved under these transformations, the failure is governed by the corner data, in agreement with the BV-BFV philosophy. We analyse in detail the case of electrodynamics and the interacting scalar field, for which we present a new type of duality to a sourced two-form model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا