Do you want to publish a course? Click here

Quantitative Entropy Study of Language Complexity

102   0   0.0 ( 0 )
 Added by Weibing Deng
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

We study the entropy of Chinese and English texts, based on characters in case of Chinese texts and based on words for both languages. Significant differences are found between the languages and between different personal styles of debating partners. The entropy analysis points in the direction of lower entropy, that is of higher complexity. Such a text analysis would be applied for individuals of different styles, a single individual at different age, as well as different groups of the population.



rate research

Read More

90 - S. Wichmann 2008
A simple review by a linguist, citing many articles by physicists: Quantitative methods, agent-based computer simulations, language dynamics, language typology, historical linguistics
Do mass media influence peoples opinion of other countries? Using BERT, a deep neural network-based natural language processing model, we analyze a large corpus of 267,907 China-related articles published by The New York Times since 1970. We then compare our output from The New York Times to a longitudinal data set constructed from 101 cross-sectional surveys of the American publics views on China. We find that the reporting of The New York Times on China in one year explains 54% of the variance in American public opinion on China in the next. Our result confirms hypothesized links between media and public opinion and helps shed light on how mass media can influence public opinion of foreign countries.
568 - Edward Grefenstette 2013
This thesis is about the problem of compositionality in distributional semantics. Distributional semantics presupposes that the meanings of words are a function of their occurrences in textual contexts. It models words as distributions over these contexts and represents them as vectors in high dimensional spaces. The problem of compositionality for such models concerns itself with how to produce representations for larger units of text by composing the representations of smaller units of text. This thesis focuses on a particular approach to this compositionality problem, namely using the categorical framework developed by Coecke, Sadrzadeh, and Clark, which combines syntactic analysis formalisms with distributional semantic representations of meaning to produce syntactically motivated composition operations. This thesis shows how this approach can be theoretically extended and practically implemented to produce concrete compositional distributional models of natural language semantics. It furthermore demonstrates that such models can perform on par with, or better than, other competing approaches in the field of natural language processing. There are three principal contributions to computational linguistics in this thesis. The first is to extend the DisCoCat framework on the syntactic front and semantic front, incorporating a number of syntactic analysis formalisms and providing learning procedures allowing for the generation of concrete compositional distributional models. The second contribution is to evaluate the models developed from the procedures presented here, showing that they outperform other compositional distributional models present in the literature. The third contribution is to show how using category theory to solve linguistic problems forms a sound basis for research, illustrated by examples of work on this topic, that also suggest directions for future research.
End-to-end spoken language understanding (SLU) models are a class of model architectures that predict semantics directly from speech. Because of their input and output types, we refer to them as speech-to-interpretation (STI) models. Previous works have successfully applied STI models to targeted use cases, such as recognizing home automation commands, however no study has yet addressed how these models generalize to broader use cases. In this work, we analyze the relationship between the performance of STI models and the difficulty of the use case to which they are applied. We introduce empirical measures of dataset semantic complexity to quantify the difficulty of the SLU tasks. We show that near-perfect performance metrics for STI models reported in the literature were obtained with datasets that have low semantic complexity values. We perform experiments where we vary the semantic complexity of a large, proprietary dataset and show that STI model performance correlates with our semantic complexity measures, such that performance increases as complexity values decrease. Our results show that it is important to contextualize an STI models performance with the complexity values of its training dataset to reveal the scope of its applicability.
The use of Project Gutenberg (PG) as a text corpus has been extremely popular in statistical analysis of language for more than 25 years. However, in contrast to other major linguistic datasets of similar importance, no consensual full version of PG exists to date. In fact, most PG studies so far either consider only a small number of manually selected books, leading to potential biased subsets, or employ vastly different pre-processing strategies (often specified in insufficient details), raising concerns regarding the reproducibility of published results. In order to address these shortcomings, here we present the Standardized Project Gutenberg Corpus (SPGC), an open science approach to a curated version of the complete PG data containing more than 50,000 books and more than $3 times 10^9$ word-tokens. Using different sources of annotated metadata, we not only provide a broad characterization of the content of PG, but also show different examples highlighting the potential of SPGC for investigating language variability across time, subjects, and authors. We publish our methodology in detail, the code to download and process the data, as well as the obtained corpus itself on 3 different levels of granularity (raw text, timeseries of word tokens, and counts of words). In this way, we provide a reproducible, pre-processed, full-size version of Project Gutenberg as a new scientific resource for corpus linguistics, natural language processing, and information retrieval.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا