Do you want to publish a course? Click here

Energy loss spectroscopy of Buckminster C60 with twisted electrons: Influence of orbital angular momentum transfer on plasmon generation

99   0   0.0 ( 0 )
 Added by Jamal Berakdar
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent experimental progress in creating and controlling singular electron beams that carry orbital angular momentum allows for new types of local spectroscopies. We theoretically investigate the twisted-electron energy loss spectroscopy (EELS) from the C60 fullerene. Of particular interest are the strong multipolar collective excitations and their selective response to the orbital angular momentum of the impinging electron beam. Based on ab-initio calculations for the collective response we compute EELS signals with twisted electron beams and uncover the interplay between the plasmon polarity and the amount of angular momentum transfer.



rate research

Read More

We present an experimental technique using orbital angular momentum (OAM) in a fundamental laser field to drive High Harmonic Generation (HHG). The mixing of beams with different OAM allows to generate two laser foci tightly spaced to study the phase and amplitude of HHG produced in diatomic nitrogen. Nitrogen is used as a well studied system to show the quality of OAM based HHG interferometry.
Anisotropic plasmon coupling in closely-spaced chains of Ag nanoparticles was visualized using the electron energy loss spectroscopy in a scanning transmission electron microscope. For dimers as the simplest chain, mapping the plasmon excitations with nanometers spatial resolution and 0.27 eV energy resolution intuitively identified two coupling plasmons. The in-phase mode redshifted from the ultraviolet region as the inter-particle spacing was reduced, reaching the visible range at 2.7 eV. Calculations based on the discrete dipole approximation confirmed its optical activeness, where the longitudinal direction was constructed as the path for light transportation. Two coupling paths were then observed in an inflexed 4-particle chain.
146 - M. Cygorek , P. I. Tamborenea , 2015
We study the spin dynamics of carriers due to the Rashba interaction in semiconductor quantum disks and wells after excitation with light with orbital angular momentum. We find that although twisted light transfers orbital angular momentum to the excited carriers and the Rashba interaction conserves their total angular momentum, the resulting electronic spin dynamics is essentially the same for excitation with light with orbital angular momentum $l=+|l|$ and $l=-|l|$. The differences between cases with different values of $|l|$ are due to the excitation of states with slightly different energies and not to the different angular momenta per se, and vanish for samples with large radii where a $k$-space quasi-continuum limit can be established. These findings apply not only to the Rashba interaction but also to all other envelope-function approximation spin-orbit Hamiltonians like the Dresselhaus coupling.
While long-theorized, the direct observation of multiple highly dispersive C$_{60}$ valence bands has eluded researchers for more than two decades due to a variety of intrinsic and extrinsic factors. Here we report a realization of multiple highly dispersive (330-520 meV) valence bands in pure thin film C$_{60}$ on a novel substrate--the three-dimensional topological insulator Bi$_{2}$Se$_{3}$--through the use of angle-resolved photoemission spectroscopy (ARPES) and first-principles calculations. The effects of this novel substrate reducing C$_{60}$ rotational disorder are discussed. Our results provide important considerations for past and future band structure studies as well as the increasingly popular C$_{60}$ electronic device applications, especially those making use of heterostructures.
Experimental results from the generation of Raman sidebands using optical vortices are presented. By generating two sets of sidebands originating from different locations in a Raman active crystal, one set containing optical orbital angular momentum and the other serving as a reference, a Youngs double slit experiment was simultaneously realized for each sideband. The interference between the two sets of sidebands was used to determine the helicity and topological charge in each order. Topological charges in all orders were found to be discrete and follow selection rules predicted by a cascaded Raman process.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا