Do you want to publish a course? Click here

On significance of VLBI/Gaia position offsets

63   0   0.0 ( 0 )
 Added by Yuri Kovalev
 Publication date 2016
  fields Physics
and research's language is English
 Authors L. Petrov




Ask ChatGPT about the research

No English abstract



rate research

Read More

261 - Y.Y. Kovalev 2020
Significant positional offsets of the value from 1 mas to more than 10 mas were found previously between radio (VLBI) and optical (Gaia) positions of active galactic nuclei (AGN). They happen preferentially parallel to the parsec-scale jet direction. AGN with VLBI-to-Gaia offsets pointed downstream the jet are found to have favourably higher optical polarization, as expected if extended optical jets dominate in the emission and shift the Gaia centroid away from the physical nucleus of the source. Upstream offsets with the suggested domination of accretion disks manifest themselves through the observed low optical polarization. Direction of linear optical polarization is confirmed to preferentially align with parsec-scale jets in AGN with dominant jets consistent with a toroidal magnetic field structure. Our findings support the disk-jet interpretation of the observed positional offsets. These results call on an intensification of AGN optical polarization monitoring programs in order to collect precious observational data. Taken together with the continued VLBI and Gaia observations, they will allow researchers to reconstruct detailed models of the disk-jet system in AGN on parsec scales.
We report the relationship between the $Gaia$--VLBI position differences and the magnitudes of source structure effects in VLBI observations. Because the $Gaia$--VLBI position differences are statistically significant for a considerable number of common sources, we attempt to discuss and explain these position differences based on VLBI observations and available source images at cm-wavelengths. Based on the derived closure amplitude root-mean-square (CARMS), which quantifies the magnitudes of source structure effects in the VLBI observations used for building the third realization of the International Celestial Reference Frame, the arc lengths and normalized arc lengths of the position differences are examined in detail. The radio jet directions and the directions of the $Gaia$--VLBI position differences are investigated for a small sample of sources. Both the arc lengths and normalized arc lengths of the $Gaia$ and VLBI positions are found to increase with the CARMS values. The majority of the sources with statistically significant position differences are associated with the sources having extended structure. Radio source structure is the one of the major factors of these position differences, and it can be the dominate factor for a number of sources. The vectors of the $Gaia$ and VLBI position differences are parallel to the radio-jet directions, which is confirmed with stronger evidence.
185 - Y.Y. Kovalev 2016
The data release 1 (DR1) of milliarcsecond-scale accurate optical positions of stars and galaxies was recently published by the space mission Gaia. We study the offsets of highly accurate absolute radio (very long baseline interferometry, VLBI) and optical positions of active galactic nuclei (AGN) to see whether or not a signature of wavelength-dependent parsec-scale structure can be seen. We analyzed VLBI and Gaia positions and determined the direction of jets in 2957 AGNs from their VLBI images. We find that there is a statistically significant excess of sources with VLBI-to-Gaia position offset in directions along and opposite to the jet. Offsets along the jet vary from zero to tens of mas. Offsets in the opposite direction do not exceed 3 mas. The presense of strong, extended parsec-scale optical jet structures in many AGNs is required to explain all observed VLBI-Gaia offsets along the jet direction. The offsets in the opposite direction shorter than 1 mas can be explained either by a non-point-like VLBI jet structure or a core-shift effect due to synchrotron opacity.
The VLBI USNO 2016A (U16A) solution is part of a work-in-progress effort by USNO towards the preparation of the ICRF3. Most of the astrometric improvement with respect to the ICRF2 is due to the re-observation of the VCS sources. Our objective in this paper is to assess U16As astrometry. A comparison with ICRF2 shows statistically significant offsets of size 0.1 mas between the two solutions. While Gaia DR1 positions are not precise enough to resolve these offsets, they are found to be significantly closer to U16A than ICRF2. In particular, the trend for typically larger errors for Southern sources in VLBI solutions are decreased in U16A. Overall, the VLBI-Gaia offsets are reduced by 21%. The U16A list includes 718 sources not previously included in ICRF2. Twenty of those new sources have statistically significant radio-optical offsets. In two-thirds of the cases, these offsets can be explained from PanSTARRS images.
88 - F.Mignard 2019
I provide a summary of the ESA space astrometry mission Gaia regarding its main objectives and current status following the 2nd data release (Gaia DR2) in April 2018. The Gaia achievements in astrometry are assessed with a historical perspective by comparing the DR2 content to sky surveys or parallax searches over the last two centuries. One shows that Gaia sounds more like a big leap into a new world than an incremental progress in this field.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا