Do you want to publish a course? Click here

Spectroscopic Comparison of Metal-Rich RRab Stars of the Galactic Field with Their Metal-Poor Counterparts

55   0   0.0 ( 0 )
 Added by Chris Sneden
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate atmospheric properties of 35 stable RRab stars that possess the full ranges of period, light amplitude, and metal abundance found in Galactic RR Lyrae stars. Our results are derived from several thousand echelle spectra obtained over several years with the du Pont telescope of Las Campanas Observatory. Radial velocities of metal lines and the Halpha line were used to construct curves of radial velocity versus pulsation phase. From these we estimated radial velocity amplitudes for metal lines (formed near the photosphere) and Halpha Doppler cores (formed at small optical depths). We also measured Halpha emission fluxes when they appear during primary light rises. Spectra shifted to rest wavelengths, binned into small phase intervals, and coadded were used to perform model atmospheric and abundance analyses. The derived metallicities and those of some previous spectroscopic surveys were combined to produce a new calibration of the Layden abundance scale. We then divided our RRab sample into metal-rich (disk) and metal-poor (halo) groups at [Fe/H]=-1.0. The atmospheres of RRab families, so defined, differ with respect to (a) peak strength of Halpha emission flux, (b) Halpha radial velocity amplitude, (c) dynamical gravity, (d) stellar radius variation, (e) secondary acceleration during the photometric bump that precedes minimum light, and (g) duration of Halpha line-doubling. We also detected Halpha line-doubling during the bump in the metal-poor family, but not in the metal-rich one. Though all RRab probably are core helium-burning horizontal branch stars, the metal-rich group appear to be a species sui generis.



rate research

Read More

Very metal-poor stars are of obvious importance for many problems in chemical evolution, star formation, and galaxy evolution. Finding complete samples of such stars which are also bright enough to allow high-precision individual analyses is of considerable interest. We demonstrate here that stars with iron abundances [Fe/H] < -2 dex, and down to below -4 dex, can be efficiently identified within the Radial Velocity Experiment (RAVE) survey of bright stars, without requiring additional confirmatory observations. We determine a calibration of the equivalent width of the Calcium triplet lines measured from the RAVE spectra onto true [Fe/H], using high spectral resolution data for a subset of the stars. These RAVE iron abundances are accurate enough to obviate the need for confirmatory higher-resolution spectroscopy. Our initial study has identified 631 stars with [Fe/H] <= -2, from a RAVE database containing approximately 200,000 stars. This RAVE-based sample is complete for stars with [Fe/H] < -2.5, allowing statistical sample analysis. We identify three stars with [Fe/H] <= -4. Of these, one was already known to be `ultra metal-poor, one is a known carbon-enhanced metal-poor star, but we obtain [Fe/H]= -4.0, rather than the published [Fe/H]=-3.3, and derive [C/Fe] = +0.9, and [N/Fe] = +3.2, and the third is at the limit of our S/N. RAVE observations are on-going and should prove to be a rich source of bright, easily studied, very metal-poor stars.
We report on early results from a pilot program searching for metal-poor stars with LAMOST and follow-up high-resolution observation acquired with the MIKE spectrograph attached to the Magellan~II telescope. We performed detailed abundance analysis for eight objects with iron abundances [Fe/H] < -2.0, including five extremely metal-poor (EMP; [Fe/H] < -3.0) stars with two having [Fe/H] < -3.5. Among these objects, three are newly discovered EMP stars, one of which is confirmed for the first time with high-resolution spectral observations. Three program stars are regarded as carbon-enhanced metal-poor (CEMP) stars, including two stars with no enhancement in their neutron-capture elements, which thus possibly belong to the class of CEMP-no stars; one of these objects also exhibits significant enhancement in nitrogen, and is thus a potential carbon and nitrogen-enhanced metal-poor star. The [X/Fe] ratios of the sample stars generally agree with those reported in the literature for other metal-poor stars in the same [Fe/H] range. We also compared the abundance patterns of individual program stars with the average abundance pattern of metal-poor stars, and find only one chemically peculiar object with abundances of at least two elements (other than C and N) showing deviations larger than 0.5dex. The distribution of [Sr/Ba] versus [Ba/H] agrees that an additional nucleosynthesis mechanism is needed aside from a single r-process. Two program stars with extremely low abundances of Sr and Ba support the prospect that both main and weak r-process may have operated during the early phase of Galactic chemical evolution. The distribution of [C/N] shows that there are two groups of carbon-normal giants with different degrees of mixing. However, it is difficult to explain the observed behavior of the [C/N] of the nitrogen-enhanced unevolved stars based on current data.
Hubble Space Telescope (HST) fine guidance sensor observations were used to obtain parallaxes of eight metal-poor ([Fe/H] < -1.4) stars. The parallaxes of these stars determined by the revised Hipparcos reduction average 17% accuracy, in contrast to our new HST parallaxes which average 1% accuracy and have errors on the individual parallaxes ranging from 85 to 144 microarcsecond. This parallax data has been combined with HST ACS photometry in the F606W and F814W filters to obtain the absolute magnitudes of the stars with an accuracy of 0.02 to 0.03 magnitudes. Six of these stars are on the main sequence (with -2.7 < [Fe/H] < -1.8), and suitable for testing metal-poor stellar evolution models and determining the distances to metal-poor globular clusters. Using the abundances obtained by OMalley et al. (2017) we find that standard stellar models using the Vandenberg & Clem (2003) color transformation do a reasonable job of matching five of the main sequence stars, with HD 54639 ([Fe/H] = -2.5) being anomalous in its location in the color-magnitude diagram. Stellar models and isochrones were generated using a Monte Carlo analysis to take into account uncertainties in the models. Isochrones which fit the parallax stars were used to determine the distances and ages of nine globular clusters (with -2.4 <= [Fe/H] <= -1.9$). Averaging together the age of all nine clusters, leads to an absolute age of the oldest, most metal-poor globular clusters of 12.7+/- 1.0 Gyr, where the quoted uncertainty takes into account the known uncertainties in the stellar models and isochrones, along with the uncertainty in the distance and reddening of the clusters.
Atmospheric parameters and chemical compositions for ten stars with metallicities in the region of -2.2< [Fe/H] <-0.6 were precisely determined using high resolution, high signal to noise, spectra. For each star the abundances, for 14 to 27 elements, were derived using both LTE and NLTE approaches. In particular, differences by assuming LTE or NLTE are about 0.10 dex; depending on [Fe/H], Teff, gravity and element lines used in the analysis. We find that the O abundance has the largest error, ranging from 0.10 and 0.2 dex. The best measured elements are Cr, Fe, and Mn; with errors etween 0.03 and 0.11 dex. The stars in our sample were included in previous different observational work. We provide a consistent data analysis. The data dispersion introduced in the literature by different techniques and assumptions used by the different authors is within the observational errors, excepting for HD103095. We compare these results with stellar observations from different data sets and a number of theoretical galactic chemical evolution (GCE) simulations. We find a large scatter in the GCE results, used to study the origin of the elements. Within this scatter as found in previous GCE simulations, we cannot reproduce the evolution of the elemental ratios [Sc/Fe], [Ti/Fe], and [V/Fe] at different metallicities. The stellar yields from core collapse supernovae (CCSN) are likely primarily responsible for this discrepancy. Possible solutions and open problems are discussed.
We report the discovery of one extremely metal-poor (EMP; [Fe/H]<-3) and one ultra metal-poor (UMP; [Fe/H]<-4) star selected from the SDSS/SEGUE survey. These stars were identified as EMP candidates based on their medium-resolution (R~2,000) spectra, and were followed-up with high-resolution (R~35,000) spectroscopy with the Magellan-Clay Telescope. Their derived chemical abundances exhibit good agreement with those of stars with similar metallicities. We also provide new insights on the formation of the UMP stars, based on comparison with a new set of theoretical models of supernovae nucleosynthesis. The models were matched with 20 UMP stars found in the literature, together with one of the program stars (SDSS J1204+1201), with [Fe/H]=-4.34. From fitting their abundances, we find that the supernovae progenitors, for stars where carbon and nitrogen are measured, had masses ranging from 20.5 M_sun to 28 M_sun and explosion energies from 0.3 to 0.9x10^51 erg. These results are highly sensitive to the carbon and nitrogen abundance determinations, which is one of the main drivers for future high-resolution follow-up of UMP candidates. In addition, we are able to reproduce the different CNO abundance patterns found in UMP stars with a single progenitor type, by varying its mass and explosion energy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا