No Arabic abstract
The microscopic orientation and position of photoactive molecules is crucial to the operation of optoelectronic devices such as OLEDs and solar cells. Here, we introduce a shape-persistent macrocyclic molecule as an excellent fluorescent probe to simply measure (i) its orientation by rotating the excitation polarization and recording the strength of modulation in photoluminescence (PL), and (ii) its position in a film by analyzing the overall PL brightness at the molecular level. The unique shape, the absorption and the fluorescence properties of this probe yields information on molecular orientation and position. We control orientation and positioning of the probe in a polymer film by solvent vapor annealing (SVA). During the SVA process the molecules accumulate at the polymer/air interface, where they adopt a flat conformation, much like water lilies on the surface of a pond. The results are significant for OLED fabrication and single-molecule spectroscopy (SMS) in general.
We study interaction of generic asymmetric molecules with a pair of strong time-delayed short laser pulses with crossed linear polarizations. We show that such an excitation not only provides unidirectional rotation of the most polarizable molecular axis, but also induces a directed torque along this axis, which results in the transient orientation of the molecules. The asymmetric molecules are chiral in nature and different molecular enantiomers experience the orienting action in opposite directions causing out-of-phase oscillation of their dipole moments. The resulting microwave radiation was recently suggested to be used for analysis/discrimination of chiral molecular mixtures. We reveal the mechanism behind this laser induced orientation effect, show that it is classical in nature, and envision further applications of light with skewed polarization.
Solvent vapor annealing (SVA) is known to be a simple, low-cost and highly efficient technique to produce defect-free diblock copolymer (BCP) thin films. Not only can the solvent weaken the BCP segmental interactions, but it can vary the characteristic spacing of the BCP microstructures. We carry out systematic theoretical studies on the effect of adding solvent into lamellar BCP thin films on the defect removal close to the BCP order-disorder transition. We find that the increase of the lamellar spacing, as is induced by addition of solvent, facilitates more efficient removal of defects. The stability of a particular defect in a lamellar BCP thin film is given in terms of two key controllable parameters: the amount of BCP swelling and solvent evaporation rate. Our results highlight the SVA mechanism for obtaining defect-free BCP thin films, as is highly desired in nanolithography and other industrial applications.
Second-Harmonic Scatteringh (SHS) experiments provide a unique approach to probe non-centrosymmetric environments in aqueous media, from bulk solutions to interfaces, living cells and tissue. A central assumption made in analyzing SHS experiments is that the each molecule scatters light according to a constant molecular hyperpolarizability tensor $boldsymbol{beta}^{(2)}$. Here, we investigate the dependence of the molecular hyperpolarizability of water on its environment and internal geometric distortions, in order to test the hypothesis of constant $boldsymbol{beta}^{(2)}$. We use quantum chemistry calculations of the hyperpolarizability of a molecule embedded in point-charge environments obtained from simulations of bulk water. We demonstrate that both the heterogeneity of the solvent configurations and the quantum mechanical fluctuations of the molecular geometry introduce large variations in the non-linear optical response of water. This finding has the potential to change the way SHS experiments are interpreted: in particular, isotopic differences between H$_2$O and D$_2$O could explain recent second-harmonic scattering observations. Finally, we show that a simple machine-learning framework can predict accurately the fluctuations of the molecular hyperpolarizability. This model accounts for the microscopic inhomogeneity of the solvent and represents a first step towards quantitative modelling of SHS experiments.
The scales of the white Cyphochilus beetles are endowed with unusual whiteness arising from the exceptional scattering efficiency of their disordered ultrastructure optimized through millions of years of evolution. Here, a simple, one-step method based on water vapor-induced phase separation (VIPS) is developed to prepare ultra-thin polystyrene (PS) films with similar microstructure and comparable optical performance. A typical biomimetic 3.5 um PS film exhibits a diffuse reflectance of 61% at 500 nm, which translates into a transport mean free path below 1 um. A complete optical characterization through Monte Carlo simulations reveals how such scattering performance arises from the scattering coefficient and scattering anisotropy, whose interplay provides insight into the morphological properties of the material. The potential of bright-white coatings as smart sensors or wearable devices is highlighted using a treated ultra-thin film as a real-time sensor for human exhalation.
The growth of wafer-scale and uniform monoclinic VO2 film was a challenge if considering the multivalent vanadium atom and the various phase structures of VO2 compound. Directly oxidizing metallic vanadium film in oxygen gas seemed to be an easy way, while the oxidation parameters were extremely sensitive due to the critical preparation window. Here we proposed a facile thermal oxidation by water-vapor to produce wafer-scale VO2 films with high quality. Results indicated that by using the water-vapor oxidant, the temperature window for VO2 growth was greatly broadened. In addition, the obtained wafer-size VO2 film showed very uniform surface and sharp resistance change. The chemical reaction routes with water-vapor were calculated, which favored the VO2 film growth. Our results not only demonstrated that the water-vapor could be used as a modest oxidizing agent, but also showed the unique advantage for large size VO2 film preparation.