Do you want to publish a course? Click here

Defect removal by solvent vapor annealing in thin films of lamellar diblock copolymers

98   0   0.0 ( 0 )
 Added by Xinpeng Xu Dr.
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Solvent vapor annealing (SVA) is known to be a simple, low-cost and highly efficient technique to produce defect-free diblock copolymer (BCP) thin films. Not only can the solvent weaken the BCP segmental interactions, but it can vary the characteristic spacing of the BCP microstructures. We carry out systematic theoretical studies on the effect of adding solvent into lamellar BCP thin films on the defect removal close to the BCP order-disorder transition. We find that the increase of the lamellar spacing, as is induced by addition of solvent, facilitates more efficient removal of defects. The stability of a particular defect in a lamellar BCP thin film is given in terms of two key controllable parameters: the amount of BCP swelling and solvent evaporation rate. Our results highlight the SVA mechanism for obtaining defect-free BCP thin films, as is highly desired in nanolithography and other industrial applications.



rate research

Read More

141 - Jian Qin , David C. Morse 2011
Composition fluctuations in disordered melts of symmetric diblock copolymers are studied by Monte Carlo simulation over a range of chain lengths and interaction strengths. Results are used to test three theories: (1) the random phase approximation (RPA), (2) the Fredrickson-Helfand (FH) theory, which was designed to describe large fluctuations near an order-disorder transition (ODT), and (3) a more recent renormalized one-loop (ROL) theory, which reduces to FH theory near the ODT, but which is found to be accurate over a much wider range of parameters.
115 - Jian Qin , Piotr Grzywacz , 2011
A renormalized one-loop theory (ROL) is used to calculate corrections to the random phase approximation (RPA) for the structure factor $Sc(q)$ in disordered diblock copolymer melts. Predictions are given for the peak intensity $S(q^{star})$, peak position $q^{star}$, and single-chain statistics for symmetric and asymmetric copolymers as functions of $chi N$, where $chi$ is the Flory-Huggins interaction parameter and $N$ is the degree of polymerization. The ROL and Fredrickson-Helfand (FH) theories are found to yield asymptotically equivalent results for the dependence of the peak intensity $S(q^{star})$ upon $chi N$ for symmetric diblock copolymers in the limit of strong scattering, or large $chi N$, but yield qualitatively different predictions for symmetric copolymers far from the ODT and for asymmetric copolymers. The ROL theory predicts a suppression of $S(q^star)$ and a decrease of $q^{star}$ for large values of $chi N$, relative to the RPA predictions, but an enhancement of $S(q^{star})$ and an increase in $q^{star}$ for small $chi N$ ($chi N < 5$). By separating intra- and inter-molecular contributions to $S^{-1}(q)$, we show that the decrease in $q^{star}$ near the ODT is caused by the $q$ dependence of the intermolecular direct correlation function, and is unrelated to any change in single-chain statistics, but that the increase in $q^{star}$ at small values of $chi N$ is a result of non-Gaussian single-chain statistics.
We investigate the relaxation behavior of thin films of a polyamide random copolymer, PA66/6I, with various film thicknesses using dielectric relaxation spectroscopy. Two dielectric signals are observed at high temperatures, the $alpha$-process and the relaxation process due to electrode polarization (the EP-process). The relaxation time of the EP-process has a Vogel-Fulcher-Tammann type of temperature dependence, and the glass transition temperature, $T_{rm g}$, evaluated from the EP-process agrees very well with the $T_{rm g}$ determined from the thermal measurements. The fragility index derived from the EP-process increases with decreasing film thickness. The relaxation time and the dielectric relaxation strength of the EP-process are described by a linear function of the film thickness $d$ for large values of $d$, which can be regarded as experimental evidence for the validity of attributing the observed signal to the EP-process. Furthermore, there is distinct deviation from this linear law for thicknesses smaller than a critical value. This deviation observed in thinner films is associated with an increase in the mobility and/or diffusion constant of the charge carriers responsible for the EP-process. The $alpha$-process is located in a high frequency region than the EP-process at high temperatures, but merges with the EP-process at lower temperatures near the glass transition region. The thickness dependence of the relaxation time of the $alpha$-process is different from that of the EP-process. This suggests that there is decoupling between the segmental motion of the polymers and the translational motion of the charge carriers in confinement.
112 - Chi To Lai , An-Chang Shi 2021
The formation of various bicontinuous phases from binary blends of linear AB diblock copolymers (DBCPs) is studied using the polymeric self-consistent field theory. The theoretical study predicts that the double-diamond and the plumbers nightmare phases, which are metastable for neat diblock copolymers, could be stabilized in block copolymers with designed dispersity, namely, binary blends composed of a gyroid-forming DBCP and a homopolymer-like DBCP. The spatial distribution of different monomers reveals that these two types of DBCPs are segregated such that the homopolymer-like component is localized at the nodes to relieve the packing frustration. Simultaneously, the presence of a local segregation of the two DBCPs on the AB interface regulates the interfacial curvature. These two mechanisms could act in tandem for homopolymer-like diblock copolymers with proper compositions, resulting in larger stability regions for the novel bicontinuous phases.
The Ohta-Kawasaki model for diblock-copolymers is well known to the scientific community of diffuse-interface methods. To accurately capture the long-time evolution of the moving interfaces, we present a derivation of the corresponding sharp-interface limit using matched asymptotic expansions, and show that the limiting process leads to a Hele-Shaw type moving interface problem. The numerical treatment of the sharp-interface limit is more complicated due to the stiffness of the equations. To address this problem, we present a boundary integral formulation corresponding to a sharp interface limit of the Ohta-Kawasaki model. Starting with the governing equations defined on separate phase domains, we develop boundary integral equations valid for multi-connected domains in a 2D plane. For numerical simplicity we assume our problem is driven by a uniform Dirichlet condition on a circular far-field boundary. The integral formulation of the problem involves both double- and single-layer potentials due to the modified boundary condition. In particular, our formulation allows one to compute the nonlinear dynamics of a non-equilibrium system and pattern formation of an equilibrating system. Numerical tests on an evolving slightly perturbed circular interface (separating the two phases) are in excellent agreement with the linear analysis, demonstrating that the method is stable, efficient and spectrally accurate in space.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا