No Arabic abstract
Employing quasiclassical theory of superconductivity combined with Keldysh technique we investigate large thermoelectric effect in multiterminal ballistic normal-superconducting (NS) hybrid structures. We argue that this effect is caused by electron-hole asymmetry generated by coherent Andreev reflection of quasiparticles at interfaces of two different superconductors with non-zero phase difference. Within our model we derive a general expression for thermoelectric voltages $V_{T1,2}$ induced in two different normal terminals exposed to a thermal gradient. Our results apply at any temperature difference in the subgap regime and allow to explicitly analyze both temperature and phase dependencies of $V_{T1,2}$ demonstrating that in general there exists no fundamental relation between these voltages and the equilibrium Josephson current in SNS junctions.
We present a detailed theoretical description of quantum coherent electron transport in voltage-biased cross-like Andreev interferometers. Making use of the charge conjugation symmetry encoded in the quasiclassical formalism, we elucidate a crucial role played by geometric and electron-hole asymmetries in these structures. We argue that a non-vanishing Aharonov-Bohm-like contribution to the current $I_S$ flowing in the superconducting contour may develop only in geometrically asymmetric interferometers making their behavior qualitatively different from that of symmetric devices. The current $I_N$ in the normal contour -- along with $I_S$ -- is found to be sensitive to phase-coherent effects thereby also acquiring a $2pi$-periodic dependence on the Josephson phase. In asymmetric structures this current develops an odd-in-phase contribution originating from electron-hole asymmetry. We demonstrate that both phase dependent currents $I_S$ and $I_N$ can be controlled and manipulated by tuning the applied voltage, temperature and system topology, thus rendering Andreev interferometers particularly important for future applications in modern electronics.
We predict a novel $(I_0,phi_0)$-junction state of multi-terminal Andreev interferometers that emerges from an interplay between long-range quantum coherence and non-equilibrium effects. Under non-zero bias $V$ the current-phase relation $I_S(phi)$ resembles that of a $phi_0$-junction differing from the latter due to a non-zero average $I_0(V) = left< I_S(phi)right>_{phi}$. The flux-dependent thermopower ${mathcal S}(Phi)$ of the system exhibits features similar to those of a $(I_0,phi_0)$-junction and in certain limits it can reduce to either odd or even function of $Phi$ in the agreement with a number of experimental observations.
We report the realization and investigation of a ballistic Andreev interferometer based on an InAs two dimensional electron gas coupled to a superconducting Nb loop. We observe strong magnetic modulations in the voltage drop across the device due to quasiparticle interference within the weak-link. The interferometer exhibits flux noise down to $sim 80, muPhi_0/sqrt{textrm{Hz}}$, and a robust behavior in temperature with voltage oscillations surviving up to $sim7,$K. Besides this remarkable performance, the device represents a crucial first step for the realization of a fully-tunable ballistic superconducting magnetometer and embodies a potential new platform for the investigation of Majorana bound states as well as non-local entanglement of Cooper pairs.
We develop a detailed theory describing a non-trivial interplay between non-equilibrium effects and long-range quantum coherence in superconducting hybrid nanostructures exposed to a temperature gradient. We establish a direct relation between thermoelectric and Josephson effects in such structures and demonstrate that at temperatures exceeding the Thouless energy of our device both phase-coherent thermoelectric signal and the supercurrent may be strongly enhanced due to non-equilibrium low energy quasiparticles propagating across the system without any significant phase relaxation. By applying a temperature gradient one can drive the system into a well pronounced $pi$-junction state, thereby creating novel opportunities for applications of Andreev interferometers.
We study thermoelectric effects in superconducting nanobridges and demonstrate that the magnitude of these effects can be comparable or even larger than that for a macroscopic superconducting circuit. The reason is related to a possibility to have very large gradients of electron temperature within the nanobridge. The corresponding heat conductivity problems are considered. It is shown that the nanoscale devices allow one to get rid of masking effects related to spurious magnetic fields.