Do you want to publish a course? Click here

Challenges of Feature Selection for Big Data Analytics

216   0   0.0 ( 0 )
 Added by Jundong Li
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

We are surrounded by huge amounts of large-scale high dimensional data. It is desirable to reduce the dimensionality of data for many learning tasks due to the curse of dimensionality. Feature selection has shown its effectiveness in many applications by building simpler and more comprehensive model, improving learning performance, and preparing clean, understandable data. Recently, some unique characteristics of big data such as data velocity and data variety present challenges to the feature selection problem. In this paper, we envision these challenges of feature selection for big data analytics. In particular, we first give a brief introduction about feature selection and then detail the challenges of feature selection for structured, heterogeneous and streaming data as well as its scalability and stability issues. At last, to facilitate and promote the feature selection research, we present an open-source feature selection repository (scikit-feature), which consists of most of current popular feature selection algorithms.



rate research

Read More

While manufacturers have been generating highly distributed data from various systems, devices and applications, a number of challenges in both data management and data analysis require new approaches to support the big data era. These challenges for industrial big data analytics is real-time analysis and decision-making from massive heterogeneous data sources in manufacturing space. This survey presents new concepts, methodologies, and applications scenarios of industrial big data analytics, which can provide dramatic improvements in velocity and veracity problem solving. We focus on five important methodologies of industrial big data analytics: 1) Highly distributed industrial data ingestion: access and integrate to highly distributed data sources from various systems, devices and applications; 2) Industrial big data repository: cope with sampling biases and heterogeneity, and store different data formats and structures; 3) Large-scale industrial data management: organizes massive heterogeneous data and share large-scale data; 4) Industrial data analytics: track data provenance, from data generation through data preparation; 5) Industrial data governance: ensures data trust, integrity and security. For each phase, we introduce to current research in industries and academia, and discusses challenges and potential solutions. We also examine the typical applications of industrial big data, including smart factory visibility, machine fleet, energy management, proactive maintenance, and just in time supply chain. These discussions aim to understand the value of industrial big data. Lastly, this survey is concluded with a discussion of open problems and future directions.
The explosion of advancements in artificial intelligence, sensor technologies, and wireless communication activates ubiquitous sensing through distributed sensors. These sensors are various domains of networks that lead us to smart systems in healthcare, transportation, environment, and other relevant branches/networks. Having collaborative interaction among the smart systems connects end-user devices to each other which enables achieving a new integrated entity called Smart Cities. The goal of this study is to provide a comprehensive survey of data analytics in smart cities. In this paper, we aim to focus on one of the smart cities important branches, namely Smart Mobility, and its positive ample impact on the smart cities decision-making process. Intelligent decision-making systems in smart mobility offer many advantages such as saving energy, relaying city traffic, and more importantly, reducing air pollution by offering real-time useful information and imperative knowledge. Making a decision in smart cities in time is challenging due to various and high dimensional factors and parameters, which are not frequently collected. In this paper, we first address current challenges in smart cities and provide an overview of potential solutions to these challenges. Then, we offer a framework of these solutions, called universal smart cities decision making, with three main sections of data capturing, data analysis, and decision making to optimize the smart mobility within smart cities. With this framework, we elaborate on fundamental concepts of big data, machine learning, and deep leaning algorithms that have been applied to smart cities and discuss the role of these algorithms in decision making for smart mobility in smart cities.
Clinicians decisions are becoming more and more evidence-based meaning in no other field the big data analytics so promising as in healthcare. Due to the sheer size and availability of healthcare data, big data analytics has revolutionized this industry and promises us a world of opportunities. It promises us the power of early detection, prediction, prevention and helps us to improve the quality of life. Researchers and clinicians are working to inhibit big data from having a positive impact on health in the future. Different tools and techniques are being used to analyze, process, accumulate, assimilate and manage large amount of healthcare data either in structured or unstructured form. In this paper, we would like to address the need of big data analytics in healthcare: why and how can it help to improve life?. We present the emerging landscape of big data and analytical techniques in the five sub-disciplines of healthcare i.e.medical image analysis and imaging informatics, bioinformatics, clinical informatics, public health informatics and medical signal analytics. We presents different architectures, advantages and repositories of each discipline that draws an integrated depiction of how distinct healthcare activities are accomplished in the pipeline to facilitate individual patients from multiple perspectives. Finally the paper ends with the notable applications and challenges in adoption of big data analytics in healthcare.
Next Generation Sequencing (NGS) technology has resulted in massive amounts of proteomics and genomics data. This data is of no use if it is not properly analyzed. ETL (Extraction, Transformation, Loading) is an important step in designing data analytics applications. ETL requires proper understanding of features of data. Data format plays a key role in understanding of data, representation of data, space required to store data, data I/O during processing of data, intermediate results of processing, in-memory analysis of data and overall time required to process data. Different data mining and machine learning algorithms require input data in specific types and formats. This paper explores the data formats used by different tools and algorithms and also presents modern data formats that are used on Big Data Platform. It will help researchers and developers in choosing appropriate data format to be used for a particular tool or algorithm.
The relevance and importance of contextualizing data analytics is described. Qualitative characteristics might form the context of quantitative analysis. Topics that are at issue include: contrast, baselining, secondary data sources, supplementary data sources, dynamic and heterogeneous data. In geometric data analysis, especially with the Correspondence Analysis platform, various case studies are both experimented with, and are reviewed. In such aspects as paradigms followed, and technical implementation, implicitly and explicitly, an important point made is the major relevance of such work for both burgeoning analytical needs and for new analytical areas including Big Data analytics, and so on. For the general reader, it is aimed to display and describe, first of all, the analytical outcomes that are subject to analysis here, and then proceed to detail the more quantitative outcomes that fully support the analytics carried out.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا