Do you want to publish a course? Click here

Homogeneous fibrations on log Calabi-Yau varieties

193   0   0.0 ( 0 )
 Added by Jinsong Xu
 Publication date 2016
  fields
and research's language is English
 Authors Jinsong Xu




Ask ChatGPT about the research

We prove a structure theorem for the Albanese maps of varieties with Q-linearly trivial log canonical divisors. Our start point is the action of a nonlinear algebraic group on a projective variety.



rate research

Read More

We exhibit examples of pairs $(X,D)$ where $X$ is a smooth projective variety and $D$ is an anticanonical reduced simple normal crossing divisor such that the deformations of $(X,D)$ are obstructed. These examples are constructed via toric geometry.
128 - Chen Jiang , Haidong Liu 2020
We show the boundedness of B-pluricanonical representations of lc log Calabi-Yau pairs in dimension $2$. As applications, we prove the boundedness of indices of slc log Calabi-Yau pairs up to dimension $3$ and that of non-klt lc log Calabi-Yau pairs in dimension $4$.
We construct a global B-model for weighted homogeneous polynomials based on K. Saitos theory of primitive forms. Our main motivation is to give a rigorous statement of the so called global mirror symmetry conjecture relating Gromov-Witten invariants and Fan--Jarvis--Ruan--Witten invariants. Furthermore, our construction allows us to generalize the notion of a quasi-modular form and holomorphic anomaly equations. Finally, we prove the global mirror symmetry conjecture for the Fermat polynomials.
For complete intersection Calabi-Yau manifolds in toric varieties, Gross and Haase-Zharkov have given a conjectural combinatorial description of the special Lagrangian torus fibrations whose existence was predicted by Strominger, Yau and Zaslow. We present a geometric version of this construction, generalizing an earlier conjecture of the first author.
83 - Fumiaki Suzuki 2021
We construct higher-dimensional Calabi-Yau varieties defined over a given number field with Zariski dense sets of rational points. We give two elementary constructions in arbitrary dimensions as well as another construction in dimension three which involves certain Calabi-Yau threefolds containing an Enriques surface. The constructions also show that potential density holds for (sufficiently) general members of the families.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا