Do you want to publish a course? Click here

The skyrmion switch: turning magnetic skyrmion bubbles on and off with an electric field

237   0   0.0 ( 0 )
 Added by Anne Bernand-Mantel
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Nanoscale magnetic skyrmions are considered as potential information carriers for future spintronics memory and logic devices. Such applications will require the control of their local creation and annihilation, which involves so far solutions that are either energy consuming or difficult to integrate. Here we demonstrate the control of skyrmion bubbles nucleation and annihilation using electric field gating, an easily integrable and potentially energetically efficient solution. We present a detailed stability diagram of the skyrmion bubbles in a Pt/Co/oxide trilayer and show that their stability can be controlled via an applied electric field. An analytical bubble model, with the Dzyaloshinskii-Moriya interaction imbedded in the domain wall energy, account for the observed electrical skyrmion switching effect. This allows us to unveil the origin of the electrical control of skyrmions stability and to show that both magnetic dipolar interaction and the Dzyaloshinskii-Moriya interaction play an important role in the skyrmion bubble stabilization.



rate research

Read More

Room-temperature polar skyrmion bubbles that are recently found in oxide superlattice, have received enormous interests for their potential applications in nanoelectronics due to the nanometer size, emergent chirality, and negative capacitance. For practical applications, the ability to controllably manipulate them by using external stimuli is prerequisite. Here, we study the dynamics of individual polar skyrmion bubbles at the nanoscale by using in situ biasing in a scanning transmission electron microscope. The reversible electric field-driven phase transition between topological and trivial polar states are demonstrated. We create, erase and monitor the shrinkage and expansion of individual polar skyrmions. We find that their transition behaviors are substantially different from that of magnetic analogue. The underlying mechanism is discussed by combing with the phase-field simulations. The controllable manipulation of nanoscale polar skyrmions allows us to tune the dielectric permittivity at atomic scale and detailed knowledge of their phase transition behaviors provides fundamentals for their applications in nanoelectronics.
Magnetic skyrmions are promising for building next-generation magnetic memories and spintronic devices due to their stability, small size and the extremely low currents needed to move them. In particular, skyrmion-based racetrack memory is attractive for information technology, where skyrmions are used to store information as data bits instead of traditional domain walls. Here we numerically demonstrate the impacts of skyrmion-skyrmion and skyrmion-edge repulsions on the feasibility of skyrmion-based racetrack memory. The reliable and practicable spacing between consecutive skyrmionic bits on the racetrack as well as the ability to adjust it are investigated. Clogging of skyrmionic bits is found at the end of the racetrack, leading to the reduction of skyrmion size. Further, we demonstrate an effective and simple method to avoid the clogging of skyrmionic bits, which ensures the elimination of skyrmionic bits beyond the reading element. Our results give guidance for the design and development of future skyrmion-based racetrack memory.
Magnetic skyrmion motion induced by an electric current has drawn much interest because of its application potential in next-generation magnetic memory devices. Recently, unidirectional skyrmion motion driven by an oscillating magnetic field was also demonstrated on large (20 micrometer) bubble domains with skyrmion topology. At smaller length scale which is more relevant to high-density memory devices, we here show by numerical simulation that a skyrmion of a few tens of nanometers could also be driven by high-frequency field oscillations but with the motion direction different from the tilted oscillating field direction. We found that high-frequency field for small size skyrmions could excite skyrmion resonant modes and that a combination of different modes would result in the final skyrmion motion with a helical trajectory. Because this helical motion depends on the frequency of the field, we can control both the speed and the direction of the skyrmion motion, which is a distinguishable characteristic compared with other methods.
416 - Bei Ding , Zefang Li , Guizhou Xu 2019
Two-dimensional (2D) van der Waals (vdW) magnetic materials have recently been introduced as a new horizon in materials science and enable the potential applications for next-generation spintronic devices. Here, in this communication, the observations of stable Bloch-type magnetic skyrmions in single crystals of 2D vdW Fe3GeTe2 (FGT) are reported by using in-situ Lorentz transmission electron microscopy (TEM). We find the ground-state magnetic stripe domains in FGT transform into skyrmion bubbles when an external magnetic field is applied perpendicularly to the (001) thin plate with temperatures below the Curie-temperature TC. Most interestingly, a hexagonal lattice of skyrmion bubbles is obtained via field cooling manipulation with magnetic field applied along the [001] direction. Owing to their topological stability, the skyrmion bubble lattices are stable to large field-cooling tilted angles and further reproduced by utilizing the micromagnetic simulations. These observations directly demonstrate that the 2D vdW FGT possesses a rich variety of topological spin textures, being of a great promise candidate for future applications in the field of spintronics.
265 - Bei Ding , Junwei Zhang , Hang Li 2020
Magnetic chiral skyrmion bubbles and achiral bubbles are two independent magnetic domain structures, in which the former with equivalent winding number to skyrmions offers great promise as information carriers for further spintronic devices. Here, in this work, we experimentally investigate the generation and annihilation of magnetic chiral skyrmion bubbles and achiral bubbles in the Mn-Ni-Ga thin plate by using the Lorentz transmission electron microscopy (L-TEM). The two independent magnetic domain structures can be directly controlled after the field cooling manipulation by varying the titled angles of external magnetic fields. By imaging the magnetization reversal with increasing temperature, we found an extraordinary annihilation mode of magnetic chiral skyrmion bubbles and a non-linear frequency for the winding number reversal. Quantitative analysis of such dynamics was performed by using L-TEM to directly determine the barrier energy for the magnetization reversal of magnetic chiral skyrmion bubbles.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا