Do you want to publish a course? Click here

Modules for Experiments in Stellar Astrophysics (MESA): Giant Planets, Oscillations, Rotation, and Massive Stars

148   0   0.0 ( 0 )
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We substantially update the capabilities of the open source software package Modules for Experiments in Stellar Astrophysics (MESA), and its one-dimensional stellar evolution module, MESA Star. Improvements in MESA Stars ability to model the evolution of giant planets now extends its applicability down to masses as low as one-tenth that of Jupiter. The dramatic improvement in asteroseismology enabled by the space-based Kepler and CoRoT missions motivates our full coupling of the ADIPLS adiabatic pulsation code with MESA Star. This also motivates a numerical recasting of the Ledoux criterion that is more easily implemented when many nuclei are present at non-negligible abundances. This impacts the way in which MESA Star calculates semi-convective and thermohaline mixing. We exhibit the evolution of 3-8 Msun stars through the end of core He burning, the onset of He thermal pulses, and arrival on the white dwarf cooling sequence. We implement diffusion of angular momentum and chemical abundances that enable calculations of rotating-star models, which we compare thoroughly with earlier work. We introduce a new treatment of radiation-dominated envelopes that allows the uninterrupted evolution of massive stars to core collapse. This enables the generation of new sets of supernovae, long gamma-ray burst, and pair-instability progenitor models. We substantially modify the way in which MESA Star solves the fully coupled stellar structure and composition equations, and we show how this has improved MESAs performance scaling on multi-core processors. Updates to the modules for equation of state, opacity, nuclear reaction rates, and atmospheric boundary conditions are also provided. We describe the MESA Software Development Kit (SDK) that packages all the required components needed to form a unified and maintained build environment for MESA. [Abridged]



rate research

Read More

We update the capabilities of the open-knowledge software instrument Modules for Experiments in Stellar Astrophysics (MESA). RSP is a new functionality in MESAstar that models the non-linear radial stellar pulsations that characterize RR Lyrae, Cepheids, and other classes of variable stars. We significantly enhance numerical energy conservation capabilities, including during mass changes. For example, this enables calculations through the He flash that conserve energy to better than 0.001 %. To improve the modeling of rotating stars in MESA, we introduce a new approach to modifying the pressure and temperature equations of stellar structure, and a formulation of the projection effects of gravity darkening. A new scheme for tracking convective boundaries yields reliable values of the convective-core mass, and allows the natural emergence of adiabatic semiconvection regions during both core hydrogen- and helium-burning phases. We quantify the parallel performance of MESA on current generation multicore architectures and demonstrate improvements in the computational efficiency of radiative levitation. We report updates to the equation of state and nuclear reaction physics modules. We briefly discuss the current treatment of fallback in core-collapse supernova models and the thermodynamic evolution of supernova explosions. We close by discussing the new MESA Testhub software infrastructure to enhance source-code development.
The unparalleled photometric data obtained by NASAs Kepler Space Telescope has led to an improved understanding of stellar structure and evolution - in particular for solar-like oscillators in this context. Binary stars are fascinating objects. Because they were formed together, binary systems provide a set of two stars with very well constrained parameters. Those can be used to study properties and physical processes, such as the stellar rotation, dynamics and rotational mixing of elements and allows us to learn from the differences we find between the two components. In this work, we discussed a detailed study of the binary system KIC9163796, discovered through Kepler photometry. The ground-based follow-up spectroscopy showed that this system is a double-lined spectroscopic binary, with a mass ratio close to unity. However, the fundamental parameters of the components of this system as well as their lithium abundances differ substantially. Kepler photometry of this system allows to perform a detailed seismic analysis as well as to derive the orbital period and the surface rotation rate of the primary component of the system. Indications of the seismic signature of the secondary are found. The differing parameters are best explained with both components located in the early and the late phase of the first dredge up at the bottom of the red-giant branch. Observed lithium abundances in both components are in good agreement with prediction of stellar models including rotational mixing. By combining observations and theory, a comprehensive picture of the system can be drawn.
In the era of advanced electromagnetic and gravitational wave detectors, it has become increasingly important to effectively combine and study the impact of stellar evolution on binaries and dynamical systems of stars. Systematic studies dedicated to exploring uncertain parameters in stellar evolution are required to account for the recent observations of the stellar populations. We present a new approach to the commonly used Single-Star Evolution (SSE) fitting formulae, one that is more adaptable: Method of Interpolation for Single Star Evolution (METISSE). It makes use of interpolation between sets of pre-computed stellar tracks to approximate evolution parameters for a population of stars. We have used METISSE with detailed stellar tracks computed by the Modules for Experiments in Stellar Astrophysics (MESA), Bonn Evolutionary Code (BEC) and Cambridge STARS code. METISSE better reproduces stellar tracks computed using the STARS code compared to SSE, and is on average three times faster. Using stellar tracks computed with MESA and BEC, we apply METISSE to explore the differences in the remnant masses, the maximum radial expansion, and the main-sequence lifetime of massive stars. We find that different physical ingredients used in the evolution of stars, such as the treatment of radiation dominated envelopes, can impact their evolutionary outcome. For stars in the mass range 9 to 100 M$_odot$, the predictions of remnant masses can vary by up to 20 M$_odot$, while the maximum radial expansion achieved by a star can differ by an order of magnitude between different stellar models.
The study of chemical abundances in stars with planets is an important ingredient for the models of formation and evolution of planetary systems. In order to determine accurate abundances, it is crucial to have a reliable set of atmospheric parameters. In this work, we describe the homogeneous determination of effective temperatures, surface gravities and iron abundances for a large sample of stars with planets as well as a control sample of stars without giant planets. Our results indicate that the metallicity distribution of the stars with planets is more metal rich by ~ 0.13 dex than the control sample stars.
A bubble chamber has been developed to be used as an active target system for low energy nuclear astrophysics experiments. Adopting ideas from dark matter detection with superheated liquids, a detector system compatible with gamma-ray beams has been developed. This detector alleviates some of the limitations encountered in standard measurements of the minute cross sections of interest to stellar environments. While the astrophysically relevant nuclear reaction processes at hydrostatic burning temperatures are dominated by radiative captures, in this experimental scheme we measure the time-reversed processes. Such photodisintegrations allow us to compute the radiative capture cross sections when transitions to excited states of the reaction products are negligible. Due to the transformation of phase space, the photodisintegration cross sections are up to two orders of magnitude higher. The main advantage of the new target-detector system is a density several orders of magnitude higher than conventional gas targets. Also, the detector is virtually insensitive to the gamma-ray beam itself, thus allowing us to detect only the products of the nuclear reaction of interest. The development and the operation as well as the advantages and disadvantages of the bubble chamber are discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا