Do you want to publish a course? Click here

Weakly dynamic dark energy via metric-scalar couplings with torsion

92   0   0.0 ( 0 )
 Added by Sourav Sur
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the dynamical aspects of dark energy in the context of a non-minimally coupled scalar field with curvature and torsion. Whereas the scalar field acts as the source of the trace mode of torsion, a suitable constraint on the torsion pseudo-trace provides a mass term for the scalar field in the effective action. In the equivalent scalar-tensor framework, we find explicit cosmological solutions representing dark energy in both Einstein and Jordan frames. We demand the dynamical evolution of the dark energy to be weak enough, so that the present-day values of the cosmological parameters could be estimated keeping them within the confidence limits set for the standard $L$CDM model from recent observations. For such estimates, we examine the variations of the effective matter density and the dark energy equation of state parameters over different redshift ranges. In spite of being weakly dynamic, the dark energy component differs significantly from the cosmological constant, both in characteristics and features, for e.g. it interacts with the cosmological (dust) fluid in the Einstein frame, and crosses the phantom barrier in the Jordan frame. We also obtain the upper bounds on the torsion mode parameters and the lower bound on the effective Brans-Dicke parameter. The latter turns out to be fairly large, and in agreement with the local gravity constraints, which therefore come in support of our analysis.



rate research

Read More

We study the phase space dynamics of the non-minimally coupled Metric-Scalar-Torsion model in both Jordan and Einstein frames. We specifically check for the existence of critical points which yield stable solutions representing the current state of accelerated expansion of the universe fuelled by the Dark Energy. It is found that such solutions do indeed exist, subject to constraints on the free model parameter. In fact the evolution of the universe at these stable critical points exactly matches the evolution given by the cosmological solutions we found analytically in our previous work on the subject.
We study the phase space dynamics of cosmological models in the theoretical formulations of non-minimal metric-torsion couplings with a scalar field, and investigate in particular the critical points which yield stable solutions exhibiting cosmic acceleration driven by the {em dark energy}. The latter is defined in a way that it effectively has no direct interaction with the cosmological fluid, although in an equivalent scalar-tensor cosmological setup the scalar field interacts with the fluid (which we consider to be the pressureless dust). Determining the conditions for the existence of the stable critical points we check their physical viability, in both Einstein and Jordan frames. We also verify that in either of these frames, the evolution of the universe at the corresponding stable points matches with that given by the respective exact solutions we have found in an earlier work (arXiv: 1611.00654 [gr-qc]). We not only examine the regions of physical relevance for the trajectories in the phase space when the coupling parameter is varied, but also demonstrate the evolution profiles of the cosmological parameters of interest along fiducial trajectories in the effectively non-interacting scenarios, in both Einstein and Jordan frames.
We extend the basic formalism of mimetic-metric-torsion gravity theory, in a way that the mimetic scalar field can manifest itself geometrically as the source of not only the trace mode of torsion, but also its axial (or, pseudo-trace) mode. Specifically, we consider the mimetic field to be (i) coupled explicitly to the well-known Holst extension of the Riemann-Cartan action, and (ii) identified with the square of the associated Barbero-Immirzi field, which is presumed to be a pseudo-scalar. The conformal symmetry originally prevalent in the theory would still hold, as the associated Cartan transformations do not affect the torsion pseudo-trace, and hence the Holst term. Demanding the theory to preserve the spatial parity symmetry as well, we focus on a geometric unification of the cosmological dark sector, and show that a super-accelerating regime in the course of evolution of the universe is always feasible. From the observational perspective, assuming the cosmological evolution profile to be very close to that for $L$CDM, we further show that there could be a smooth crossing of the so-called phantom barrier at a low red-shift, however for a very restricted parametric domain. The extent of the super-acceleration have subsequently been ascertained by examining the evolution of the relevant torsion parameters.
169 - Luca Amendola 2020
We argue that the $Lambda$CDM tensions of the Hubble-Lemaitre expansion rate $H_0$ and the clustering normalization $sigma_8$ can be eased, at least in principle, by considering an interaction between dark energy and dark matter in such a way to induce a small and positive early effective equation of state and a weaker gravity. For a dark energy scalar field $phi$ interacting with dark matter through an exchange of both energy and momentum, we derive a general form of the Lagrangian allowing for the presence of scaling solutions. In a subclass of such interacting theories, we show the existence of a scaling $phi$-matter-dominated-era ($phi$MDE) which can potentially alleviate the $H_0$ tension by generating an effective high-redshift equation of state. We also study the evolution of perturbations for a model with $phi$MDE followed by cosmic acceleration and find that the effective gravitational coupling relevant to the linear growth of large-scale structures can be smaller than the Newton gravitational constant $G$ at low redshifts. The momentum exchange between dark energy and dark matter plays a crucial role for realizing weak gravity, while the energy transfer is also required for the existence of $phi$MDE.
179 - Seyen Kouwn , Phillial Oh 2012
We propose a dark energy model with a logarithmic cosmological fluid which can result in a very small current value of the dark energy density and avoid the coincidence problem without much fine-tuning. We construct a couple of dynamical models that could realize this dark energy at very low energy in terms of four scalar fields quintessence and discuss the current acceleration of the Universe. Numerical values can be made to be consistent with the accelerating Universe with adjustment of the two parameters of the theory. The potential can be given only in terms of the scale factor, but the explicit form at very low energy can be obtained in terms of the scalar field to yield of the form V(phi)=exp(-2phi)(frac{4 A}{3}phi+B). Some discussions and the physical implications of this approach are given.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا