Do you want to publish a course? Click here

High harmonic generation in Landau-quantized graphene subjected to a strong electromagnetic radiation

114   0   0.0 ( 0 )
 Added by Garnik Mkrtchian F
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study nonlinear optical response of Landau quantized graphene to an intense electromagnetic wave. In particular, we consider high harmonic generation process. It is shown that one can achieve efficient generation of high harmonics with strong radiation fields -- when the work of the wave electric field on the magnetic length is larger than pump photon energy. At that high harmonics generation process takes place for a wide range of the pump wave frequencies and intensities even for significant broadening of Landau levels because of impurities in graphene.



rate research

Read More

We investigate the relation between the canonical model of quantum optics, the Jaynes-Cummings Hamiltonian and Dirac fermions in quantizing magnetic field. We demonstrate that Rabi oscillations are observable in the optical response of graphene, providing us with a transparent picture about the structure of optical transitions. While the longitudinal conductivity reveals chaotic Rabi oscillations, the Hall component measures coherent ones. This opens up the possibility of investigating a microscopic model of a few quantum objects in a macroscopic experiment with tunable parameters.
Microscopic nonlinear quantum theory of interaction of coherent electromagnetic radiation with gapped bilayer graphene is developed. The Liouville-von Neumann equation for the density matrix is solved numerically at the multiphoton excitation regime. The developed theory of interaction of charged carriers with strong driving wave field is valid near the Dirac points of the Brillouin zone. We consider the harmonic generation process in the nonadiabatic regime of interaction when the Keldysh parameter is of the order of unity. On the basis of numerical solutions, we examine the rates of odd and even high-harmonics at the particle-hole annihilation in the field of a strong pump wave of arbitrary polarization. Obtained results show that the gapped bilayer graphene can serve as an effective medium for generation of even and odd high harmonics in the THz and far infrared domains of frequencies.
The second-order nonlinear optical susceptibility $Pi^{(2)}$ for second harmonic generation is calculated for gapped graphene. The linear and second-order nonlinear plasmon excitations are investigated in context of second harmonic generation (SHG). We report a red shift and an order of magnitude enhancement of the SHG resonance with growing gap, or alternatively, reduced electro-chemical potential.
We study nonlinear response of a quantum Hall system in semiconductor-heterostructures via third harmonic generation process and nonlinear Faraday effect. We demonstrate that Faraday rotation angle and third harmonic radiation intensity have a characteristic Hall plateaus feature. These nonlinear effects remain robust against the significant broadening of Landau levels. We predict realization of an experiment through the observation of the third harmonic signal and Faraday rotation angle, which are within the experimental feasibility.
We explore the roles of electronic band structure and Coulomb interactions in solid-state HHG by studying the optical response of linear atomic chains and carbon nanotubes to intense ultrashort pulses. Specifically, we simulate electron dynamics by solving the single-particle density matrix equation of motion in the presence of intense ultrafast optical fields, incorporating tight-binding electronic states and a self-consistent electron-electron interaction. While linear atomic chains constitute an idealized system, our realistic 1D model readily provides insight on the temporal evolution of electronic states in reciprocal space, both in the absence or presence of electron interactions, which we demonstrate to play an important role in the HHG yield. This model further predicts that doped semiconductors generate high harmonics more efficiently than their metallic and undoped counterparts. To complement this idealized system we also show results for HHG in more realistic quasi-1D structures such as carbon nanotubes, the behavior of which is found to be in good qualitative agreement with the atomic chains. Our findings apply directly to extreme nonlinear optical phenomena in atoms on surfaces, carbon-based structures, linear arrays of dopant atoms in semiconductors, and linear molecules, such as polycyclic aromatic hydrocarbon chains, and can be straightforwardly extended to optimize existing platforms for HHG or identify new solid-state alternatives in the context of nonlinear plasmonics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا