No Arabic abstract
Phonons (collective atomic vibrations in solids) are more effective in transporting heat than photons. This is the reason why the conduction mode of heat transport in nonmetals (mediated by phonons) is dominant compared to the radiation mode of heat transport (mediated by photons). However, since phonons are unable to traverse a vacuum gap (unlike photons) it is commonly believed that two bodies separated by a gap cannot exchange heat via phonons. Recently, a mechanism was proposed by which phonons can transport heat across a vacuum gap - through Van der Waals interaction between two bodies with gap less than wavelength of light. Such heat transfer mechanisms are highly relevant for heating (and cooling) of nanostructures; the heating of the flying heads in magnetic storage disks is a case in point. Here, the theoretical derivation for modeling phonon transmission is revisited and extended to the case of two bodies made of different materials separated by a vacuum gap. Magnitudes of phonon transmission, and hence the heat transfer, for commonly used materials in the micro and nano-electromechanical industry are calculated and compared with the calculation of conduction heat transfer through air for small gaps.
Van der Waals heterostructures have emerged as promising building blocks that offer access to new physics, novel device functionalities, and superior electrical and optoelectronic properties. Applications such as thermal management, photodetection, light emission, data communication, high-speed electronics and light harvesting require a thorough understanding of (nanoscale) heat flow. Here, using time-resolved photocurrent measurements we identify an efficient out-of-plane energy transfer channel, where charge carriers in graphene couple to hyperbolic phonon polaritons in the encapsulating layered material. This hyperbolic cooling is particularly efficient, giving picosecond cooling times, for hexagonal BN, where the high-momentum hyperbolic phonon polaritons enable efficient near-field energy transfer. We study this heat transfer mechanism through distinct control knobs to vary carrier density and lattice temperature, and find excellent agreement with theory without any adjustable parameters. These insights may lead to the ability to control heat flow in van der Waals heterostructures.
We present an approach to describing fluctuational electrodynamic (FED) interactions, particularly van der Waals (vdW) interactions as well as radiative heat transfer (RHT), between material bodies of vastly different length scales, allowing for going between atomistic and continuum treatments of the response of each of these bodies as desired. Any local continuum description of electromagnetic (EM) response is compatible with our approach, while atomistic descriptions in our approach are based on effective electronic and nuclear oscillator degrees of freedom, encapsulating dissipation, short-range electronic correlations, and collective nuclear vibrations (phonons). While our previous works using this approach have focused on presenting novel results, this work focuses on the derivations underlying these methods. First, we show how the distinction between atomic and macroscopic bodies is ultimately somewhat arbitrary, as formulas for vdW free energies and RHT look very similar regardless of how the distinction is drawn. Next, we demonstrate that the atomistic description of material response in our approach yields EM interaction matrix elements which are expressed in terms of analytical formulas for compact bodies or semianalytical formulas based on Ewald summation for periodic media; we use this to compute vdW interaction free energies as well as RHT powers among small biological molecules in the presence of a metallic plate as well as between parallel graphene sheets in vacuum, showing strong deviations from conventional macroscopic theories due to the confluence of geometry, phonons, and EM retardation effects. Finally, we propose formulas for efficient computation of FED interactions among material bodies in which those that are treated atomistically as well as those treated through continuum methods may have arbitrary shapes, extending previous surface-integral techniques.
The van der Waals heterostructures are a fertile frontier for discovering emergent phenomena in condensed matter systems. They are constructed by stacking elements of a large library of two-dimensional materials, which couple together through van der Waals interactions. However, the number of possible combinations within this library is staggering, and fully exploring their potential is a daunting task. Here we introduce van der Waals metamaterials to rapidly prototype and screen their quantum counterparts. These layered metamaterials are designed to reshape the flow of ultrasound to mimic electron motion. In particular, we show how to construct analogues of all stacking configurations of bilayer and trilayer graphene through the use of interlayer membranes that emulate van der Waals interactions. By changing the membranes density and thickness, we reach coupling regimes far beyond that of conventional graphene. We anticipate that van der Waals metamaterials will explore, extend, and inform future electronic devices. Equally, they allow the transfer of useful electronic behavior to acoustic systems, such as flat bands in magic-angle twisted bilayer graphene, which may aid the development of super-resolution ultrasound imagers.
We investigate the character of the van der Waals (vdW) torque and force between two coplanar and dielectrically anisotropic topological insulator (TI) slabs separated by a vacuum gap in the non-retardation regime, where the optic axes of the slabs are each perpendicular to the normal direction to the slab-gap interface and also generally differently oriented from each other. We find that in addition to the magnetoelectric coupling strength, the anisotropy can also influence the sign of the vdW force, viz., a repulsive vdW force can become attractive if the anistropy is increased sufficiently. In addition, the vdW force oscillates as a function of the angular difference between the optic axes of the TI slabs, being most repulsive/least attractive (least repulsive/most attractive) for angular differences that are integer (half-integer) multiples of $pi$. Our third finding is that the vdW torque for TI slabs is generally weaker than that for ordinary dielectric slabs. Our work provides the first instance in which the vector potential appears in a calculation of the vdW interaction for which the limit is non-retarded or static.
The effect of an implicit medium on dispersive interactions of particle pairs is discussed and simple expressions for the correction relative to vacuum are derived. We show that a single point Gauss quadrature leads to the intuitive result that the vacuum van der Waals $C_6$ coefficient is screened by the permittivity squared of the environment evaluated near to the resonance frequencies of the interacting particles. This approximation should be particularly relevant if the medium is transparent at these frequencies. In the manuscript, we provide simple models and sets of parameters for commonly used solvents, atoms and small molecules.