Do you want to publish a course? Click here

On the number of planar Eulerian orientations

131   0   0.0 ( 0 )
 Added by Claire Pennarun
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

The number of planar Eulerian maps with n edges is well-known to have a simple expression. But what is the number of planar Eulerian orientations with n edges? This problem appears to be difficult. To approach it, we define and count families of subsets and supersets of planar Eulerian orientations, indexed by an integer k, that converge to the set of all planar Eulerian orientations as k increases. The generating functions of our subsets can be characterized by systems of polynomial equations, and are thus algebraic. The generating functions of our supersets are characterized by polynomial systems involving divided differences, as often occurs in map enumeration. We prove that these series are algebraic as well. We obtain in this way lower and upper bounds on the growth rate of planar Eulerian orientations, which appears to be around 12.5.



rate research

Read More

Let $F$ be a graph. The planar Turan number of $F$, denoted by $text{ex}_{mathcal{P}}(n,F)$, is the maximum number of edges in an $n$-vertex planar graph containing no copy of $F$ as a subgraph. Let $Theta_k$ denote the family of Theta graphs on $kgeq 4$ vertices, that is, a graph obtained by joining a pair of non-consecutive vertices of a $k$-cycle with an edge. Y. Lan, et.al. determined sharp upper bound for $text{ex}_{mathcal{P}}(n,Theta_4)$ and $text{ex}_{mathcal{P}}(n,Theta_5)$. Moreover, they obtained an upper bound for $text{ex}_{mathcal{P}}(n,Theta_6)$. They proved that, $text{ex}_{mathcal{P}}(n,Theta_6)leq frac{18}{7}n-frac{36}{7}$. In this paper, we improve their result by giving a bound which is sharp. In particular, we prove that $text{ex}_{mathcal{P}}(n,Theta_6)leq frac{18}{7}n-frac{48}{7}$ and demonstrate that there are infinitely many $n$ for which there exists a $Theta_6$-free planar graph $G$ on $n$ vertices, which attains the bound.
Given a digraph $D$ with $m$ arcs and a bijection $tau: A(D)rightarrow {1, 2, ldots, m}$, we say $(D, tau)$ is an antimagic orientation of a graph $G$ if $D$ is an orientation of $G$ and no two vertices in $D$ have the same vertex-sum under $tau$, where the vertex-sum of a vertex $u$ in $D$ under $tau$ is the sum of labels of all arcs entering $u$ minus the sum of labels of all arcs leaving $u$. Hefetz, M{u}tze, and Schwartz in 2010 initiated the study of antimagic orientations of graphs, and conjectured that every connected graph admits an antimagic orientation. This conjecture seems hard, and few related results are known. However, it has been verified to be true for regular graphs, biregular bipartite graphs, and graphs with large maximum degree. In this paper, we establish more evidence for the aforementioned conjecture by studying antimagic orientations of graphs $G$ with independence number at least $|V(G)|/2$ or at most four. We obtain several results. The method we develop in this paper may shed some light on attacking the aforementioned conjecture.
Let ${rm ex}_{mathcal{P}}(n,T,H)$ denote the maximum number of copies of $T$ in an $n$-vertex planar graph which does not contain $H$ as a subgraph. When $T=K_2$, ${rm ex}_{mathcal{P}}(n,T,H)$ is the well studied function, the planar Turan number of $H$, denoted by ${rm ex}_{mathcal{P}}(n,H)$. The topic of extremal planar graphs was initiated by Dowden (2016). He obtained sharp upper bound for both ${rm ex}_{mathcal{P}}(n,C_4)$ and ${rm ex}_{mathcal{P}}(n,C_5)$. Later on, Y. Lan, et al. continued this topic and proved that ${rm ex}_{mathcal{P}}(n,C_6)leq frac{18(n-2)}{7}$. In this paper, we give a sharp upper bound ${rm ex}_{mathcal{P}}(n,C_6) leq frac{5}{2}n-7$, for all $ngeq 18$, which improves Lans result. We also pose a conjecture on ${rm ex}_{mathcal{P}}(n,C_k)$, for $kgeq 7$.
A well-known conjecture by Lovasz and Plummer from the 1970s asserted that a bridgeless cubic graph has exponentially many perfect matchings. It was solved in the affirmative by Esperet et al. (Adv. Math. 2011). On the other hand, Chudnovsky and Seymour (Combinatorica 2012) proved the conjecture in the special case of cubic planar graphs. In our work we consider random bridgeless cubic planar graphs with the uniform distribution on graphs with $n$ vertices. Under this model we show that the expected number of perfect matchings in labeled bridgeless cubic planar graphs is asymptotically $cgamma^n$, where $c>0$ and $gamma sim 1.14196$ is an explicit algebraic number. We also compute the expected number of perfect matchings in (non necessarily bridgeless) cubic planar graphs and provide lower bounds for unlabeled graphs. Our starting point is a correspondence between counting perfect matchings in rooted cubic planar maps and the partition function of the Ising model in rooted triangulations.
Wegner conjectured in 1977 that the square of every planar graph with maximum degree at most $3$ is $7$-colorable. We prove this conjecture using the discharging method and computational techniques to verify reducible configurations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا