No Arabic abstract
We propose and analyse a pumped Bose-Hubbard dimer as a source of continuous-variable Einstein-Podolsky-Rosen (EPR) steering with non-Gaussian statistics. We use the truncated Wigner representation to calculate third and fourth order cumulants, finding clear signals of non-Gaussianity. We also calculate the products of inferred quadrature variances which indicate that states demonstrating the EPR paradox are present. Our proposed experimental configuration is extrapolated from current experimental techniques and adds another possibility to the current toolbox of quantum atom optics.
We propose and analyse analogs of optical cavities for atoms using three-well Bose-Hubbard models with pumping and losses. We consider triangular configurations. With one well pumped and one damped, we find that both the mean-field dynamics and the quantum statistics show a quantitative dependence on the choice of damped well. The systems we analyse remain far from equilibrium, preserving good coherence between the wells in the steady-state. We find quadrature squeezing and mode entanglement for some parameter regimes and demonstrate that the trimer with pumping and damping at the same well is the stronger option for producing non-classical states. Due to recent experimental advances, it should be possible to demonstrate the effects we investigate and predict.
Quantum steering---a strong correlation to be verified even when one party or its measuring device is fully untrusted---not only provides a profound insight into quantum physics but also offers a crucial basis for practical applications. For continuous-variable (CV) systems, Gaussian states among others have been extensively studied, however, mostly confined to Gaussian measurements. While the fulfillment of Gaussian criterion is sufficient to detect CV steering, whether it is also necessary for Gaussian states is a question of fundamental importance in many contexts. This critically questions the validity of characterizations established only under Gaussian measurements like the quantification of steering and the monogamy relations. Here, we introduce a formalism based on local uncertainty relations of non-Gaussian measurements, which is shown to manifest quantum steering of some Gaussian states that Gaussian criterion fails to detect. To this aim, we look into Gaussian states of practical relevance, i.e. two-mode squeezed states under a lossy and an amplifying Gaussian channel. Our finding significantly modifies the characteristics of Gaussian-state steering so far established such as monogamy relations and one-way steering under Gaussian measurements, thus opening a new direction for critical studies beyond Gaussian regime.
We derive a new steering inequality based on a fine-grained uncertainty relation to capture EPR-steering for bipartite systems. Our steering inequality improves over previously known ones since it can experimentally detect all steerable two-qubit Werner state with only two measurement settings on each side. According to our inequality, pure entangle states are maximally steerable. Moreover, by slightly changing the setting, we can express the amount of violation of our inequality as a function of their violation of the CHSH inequality. Finally, we prove that the amount of violation of our steering inequality is, up to a constant factor, a lower bound on the key rate of a one-sided device independent quantum key distribution protocol secure against individual attacks. To show this result, we first derive a monogamy relation for our steering inequality.
Entanglement is the defining feature of quantum mechanics, and understanding the phenomenon is essential at the foundational level and for future progress in quantum technology. The concept of steering was introduced in 1935 by Schrodinger as a generalization of the Einstein-Podolsky-Rosen (EPR) paradox. Surprisingly, it has only recently been formalized as a quantum information task with arbitrary bipartite states and measurements, for which the existence of entanglement is necessary but not sufficient. Previous experiments in this area have been restricted to the approach of Reid [PRA 40, 913], which followed the original EPR argument in considering only two different measurement settings per side. Here we implement more than two settings so as to be able to demonstrate experimentally, for the first time, that EPR-steering occurs for mixed entangled states that are Bell-local (that is, which cannot possibly demonstrate Bell-nonlocality). Unlike the case of Bell inequalities, increasing the number of measurement settings beyond two--we use up to six--dramatically increases the robustness of the EPR-steering phenomenon to noise.
The generation and manipulation of strong entanglement and Einstein-Podolsky-Rosen (EPR) steering in macroscopic systems are outstanding challenges in modern physics. Especially, the observation of asymmetric EPR steering is important for both its fundamental role in interpreting the nature of quantum mechanics and its application as resource for the tasks where the levels of trust at different parties are highly asymmetric. Here, we study the entanglement and EPR steering between two macroscopic magnons in a hybrid ferrimagnet-light system. In the absence of light, the two types of magnons on the two sublattices can be entangled, but no quantum steering occurs when they are damped with the same rates. In the presence of the cavity field, the entanglement can be significantly enhanced, and strong two-way asymmetric quantum steering appears between two magnons with equal dispassion. This is very different from the conventional protocols to produce asymmetric steering by imposing additional unbalanced losses or noises on the two parties at the cost of reducing steerability. The essential physics is well understood by the unbalanced population of acoustic and optical magnons under the cooling effect of cavity photons. Our finding may provide a novel platform to manipulate the quantum steering and the detection of bi-party steering provides a knob to probe the magnetic damping on each sublattice of a magnet.