No Arabic abstract
We derive a new steering inequality based on a fine-grained uncertainty relation to capture EPR-steering for bipartite systems. Our steering inequality improves over previously known ones since it can experimentally detect all steerable two-qubit Werner state with only two measurement settings on each side. According to our inequality, pure entangle states are maximally steerable. Moreover, by slightly changing the setting, we can express the amount of violation of our inequality as a function of their violation of the CHSH inequality. Finally, we prove that the amount of violation of our steering inequality is, up to a constant factor, a lower bound on the key rate of a one-sided device independent quantum key distribution protocol secure against individual attacks. To show this result, we first derive a monogamy relation for our steering inequality.
Entanglement is the defining feature of quantum mechanics, and understanding the phenomenon is essential at the foundational level and for future progress in quantum technology. The concept of steering was introduced in 1935 by Schrodinger as a generalization of the Einstein-Podolsky-Rosen (EPR) paradox. Surprisingly, it has only recently been formalized as a quantum information task with arbitrary bipartite states and measurements, for which the existence of entanglement is necessary but not sufficient. Previous experiments in this area have been restricted to the approach of Reid [PRA 40, 913], which followed the original EPR argument in considering only two different measurement settings per side. Here we implement more than two settings so as to be able to demonstrate experimentally, for the first time, that EPR-steering occurs for mixed entangled states that are Bell-local (that is, which cannot possibly demonstrate Bell-nonlocality). Unlike the case of Bell inequalities, increasing the number of measurement settings beyond two--we use up to six--dramatically increases the robustness of the EPR-steering phenomenon to noise.
The generation and manipulation of strong entanglement and Einstein-Podolsky-Rosen (EPR) steering in macroscopic systems are outstanding challenges in modern physics. Especially, the observation of asymmetric EPR steering is important for both its fundamental role in interpreting the nature of quantum mechanics and its application as resource for the tasks where the levels of trust at different parties are highly asymmetric. Here, we study the entanglement and EPR steering between two macroscopic magnons in a hybrid ferrimagnet-light system. In the absence of light, the two types of magnons on the two sublattices can be entangled, but no quantum steering occurs when they are damped with the same rates. In the presence of the cavity field, the entanglement can be significantly enhanced, and strong two-way asymmetric quantum steering appears between two magnons with equal dispassion. This is very different from the conventional protocols to produce asymmetric steering by imposing additional unbalanced losses or noises on the two parties at the cost of reducing steerability. The essential physics is well understood by the unbalanced population of acoustic and optical magnons under the cooling effect of cavity photons. Our finding may provide a novel platform to manipulate the quantum steering and the detection of bi-party steering provides a knob to probe the magnetic damping on each sublattice of a magnet.
We construct steering inequalities which exhibit unbounded violation. The concept was to exploit the relationship between steering violation and uncertainty relation. To this end we apply mutually unbiased bases and anti-commuting observables, known to exibit the strongest uncertainty. In both cases, we are able to procure unbounded violations. Our approach is much more constructive and transparent than the operator space theory approach employed to obtain large violation of Bell inequalities. Importantly, using anti-commuting observables we are able to obtain a {it dichotomic} steering inequality with unbounded violation. So far there is no analogous result for Bell inequalities. Interestingly, both the dichotomic inequality and one of our inequalities can not be directly obtained from existing uncertainty relations, which strongly suggest the existence of an unknown kind of uncertainty relation.
A single photon incident on a beam splitter produces an entangled field state, and in principle could be used to violate a Bell-inequality, but such an experiment (without post-selection) is beyond the reach of current experiments. Here we consider the somewhat simpler task of demonstrating EPR-steering with a single photon (also without post-selection). That is, of demonstrating that Alices choice of measurement on her half of a single photon can affect the other half of the photon in Bobs lab, in a sense rigorously defined by us and Doherty [Phys. Rev. Lett. 98, 140402 (2007)]. Previous work by Lvovsky and co-workers [Phys. Rev. Lett. 92, 047903 (2004)] has addressed this phenomenon (which they called remote preparation) experimentally using homodyne measurements on a single photon. Here we show that, unfortunately, their experimental parameters do not meet the bounds necessary for a rigorous demonstration of EPR-steering with a single photon. However, we also show that modest improvements in the experimental parameters, and the addition of photon counting to the arsenal of Alices measurements, would be sufficient to allow such a demonstration.
We study the problem of certifying quantum steering in a detection-loophole-free manner in experimental situations that require post-selection. We present a method to find the modified local-hidden-state bound of steering inequalities in such a post-selected scenario. We then present a construction of linear steering inequalities in arbitrary finite dimension and show that they certify steering in a loophole-free manner as long as the detection efficiencies are above the known bound below which steering can never be demonstrated. We also show how our method extends to the scenarios of multipartite steering and Bell nonlocality, in the general case where there can be correlations between the losses of the different parties. In both cases we present examples to demonstrate the techniques developed.