Do you want to publish a course? Click here

On the difference between locally risk-minimizing and delta hedging strategies for exponential Levy models

54   0   0.0 ( 0 )
 Added by Youtoh Imai
 Publication date 2016
  fields Financial
and research's language is English




Ask ChatGPT about the research

We discuss the difference between locally risk-minimizing and delta hedging strategies for exponential Levy models, where delta hedging strategies in this paper are defined under the minimal martingale measure. We give firstly model-independent upper estimations for the difference. In addition we show numerical examples for two typical exponential Levy models: Merton models and variance gamma models.



rate research

Read More

The authors aim to develop numerical schemes of the two representative quadratic hedging strategies: locally risk minimizing and mean-variance hedging strategies, for models whose asset price process is given by the exponential of a normal inverse Gaussian process, using the results of Arai et al. cite{AIS}, and Arai and Imai. Here normal inverse Gaussian process is a framework of Levy processes frequently appeared in financial literature. In addition, some numerical results are also introduced.
We consider option hedging in a model where the underlying follows an exponential Levy process. We derive approximations to the variance-optimal and to some suboptimal strategies as well as to their mean squared hedging errors. The results are obtained by considering the Levy model as a perturbation of the Black-Scholes model. The approximations depend on the first four moments of logarithmic stock returns in the Levy model and option price sensitivities (greeks) in the limiting Black-Scholes model. We illustrate numerically that our formulas work well for a variety of Levy models suggested in the literature. From a theoretical point of view, it turns out that jumps have a similar effect on hedging errors as discrete-time hedging in the Black-Scholes model.
We illustrate how to compute local risk minimization (LRM) of call options for exponential Levy models. We have previously obtained a representation of LRM for call options; here we transform it into a form that allows use of the fast Fourier transform method suggested by Carr & Madan. In particular, we consider Merton jump-diffusion models and variance gamma models as concrete applications.
In the context of a locally risk-minimizing approach, the problem of hedging defaultable claims and their Follmer-Schweizer decompositions are discussed in a structural model. This is done when the underlying process is a finite variation Levy process and the claims pay a predetermined payout at maturity, contingent on no prior default. More precisely, in this particular framework, the locally risk-minimizing approach is carried out when the underlying process has jumps, the derivative is linked to a default event, and the probability measure is not necessarily risk-neutral.
We provide a new characterization of mean-variance hedging strategies in a general semimartingale market. The key point is the introduction of a new probability measure $P^{star}$ which turns the dynamic asset allocation problem into a myopic one. The minimal martingale measure relative to $P^{star}$ coincides with the variance-optimal martingale measure relative to the original probability measure $P$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا