Do you want to publish a course? Click here

On the Higher-Spin Spectrum in Large N Chern-Simons Vector Models

72   0   0.0 ( 0 )
 Added by Vladimir Kirilin
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

Chern-Simons gauge theories coupled to massless fundamental scalars or fermions define interesting non-supersymmetric 3d CFTs that possess approximate higher-spin symmetries at large N. In this paper, we compute the scaling dimensions of the higher-spin operators in these models, to leading order in the 1/N expansion and exactly in the t Hooft coupling. We obtain these results in two independent ways: by using conformal symmetry and the classical equations of motion to fix the structure of the current non-conservation, and by a direct Feynman diagram calculation. The full dependence on the t Hooft coupling can be restored by using results that follow from the weakly broken higher-spin symmetry. This analysis also allows us to obtain some explicit results for the non-conserved, parity-breaking structures that appear in planar three-point functions of the higher-spin operators. At large spin, we find that the anomalous dimensions grow logarithmically with the spin, in agreement with general expectations. This logarithmic behavior disappears in the strong coupling limit, where the anomalous dimensions turn into those of the critical O(N) or Gross-Neveu models, in agreement with the conjectured 3d bosonization duality.



rate research

Read More

We compute the two, three point function of the opearators in the spin zero multiplet of ${cal N}=2$ Supersymmetric vector matter Chern-Simons theory at large $N$ and at all orders of t Hooft coupling by solving the Schwinger-Dyson equation. Schwinger-Dyson method to compute four point function becomes extremely complicated and hence we use bootstrap method to solve for four point function of scaler operator $J_0^{f}=barpsi psi$ and $J_0^{b}=barphi phi$. Interestingly, due to the fact that $langle J_0^{f}J_0^{f}J_0^{b} rangle$ is a contact term, the four point function of $ J_0^{f}$ operator looks like that of free theory up to overall coupling constant dependent factors and up to some bulk AdS contact terms. On the other hand the $J_0^{b}$ four-point function receives an additional contribution compared to the free theory expression due to the $J_0^{f}$ exchange. Interestingly, double discontinuity of this single trace operator $J_0^{f}$ vanishes and hence it only contributes to AdS-contact term.
We consider $3$-dimensional conformal field theories with $U(N)_{kappa}$ Chern Simons gauge fields coupled to bosonic and fermionic matter fields transforming in the fundamental representation of the gauge group. In these CFTs, we compute in the tHooft large $N$ limit and to all orders in the tHooft coupling $lambda= N/ kappa$, the thermal two-point correlation functions of the spin $s=0$, $s=1$ and $s=2$ gauge invariant conformal primary operators. These are the lowest dimension single trace scalar, the $U(1)$ current and the stress tensor operators respectively. Our results furnish additional tests of the conjectured bosonization dualities in these theories at finite temperature.
We study $mathcal{N} = 3$ supersymmetric Chern-Simons-matter theory coupled to matter in the fundamental representation of $SU(N)$. In the t Hooft large $N$ limit, we compute the exact $2 to 2$ scattering amplitudes of the fundamental scalar superfields to all orders in the t Hooft coupling $lambda$. Our computations are presented in $mathcal{N} = 1$ superspace and make significant use of the residual $SO(2)_R$ symmetry in order to solve for the exact four-point correlator of the scalar superfields. By taking the on-shell limit, we are able to extract the exact $2 to 2$ scattering amplitudes of bosons/fermions in the symmetric, anti-symmetric and adjoint channels of scattering. We find that the scattering amplitude of the $mathcal{N} = 3$ theory in the planar limit is tree-level exact to all orders in the t Hooft coupling $lambda$. The result is consistent with the conjectured bosonization duality and is expected to have enhanced symmetry structures such as dual superconformal symmetry and Yangian symmetry.
We present new circular Wilson loops in three-dimensional N=4 quiver Chern-Simons-matter theory on S^3. At any given node of the quiver, a two-parameter family of operators can be obtained by opportunely deforming the 1/4 BPS Gaiotto-Yin loop. Including then adjacent nodes, the coupling to the bifundamental matter fields allows to enlarge this family and to construct loop operators based on superconnections. We discuss their classification, which depends on both discrete data and continuous parameters subject to an identification. The resulting moduli spaces are conical manifolds, similar to the conifold of the 1/6 BPS loops of the ABJ(M) theory.
362 - Mitsutoshi Fujita 2013
We study large N orbifold equivalences involving three-dimensional N=3 and N=4 supersymmetric quiver Chern-Simons-matter theories. The gravity dual of the N=3 Chern-Simons-matter theory is described by AdS4xM7 where the tri-Sasaki manifold M7 is known as the Eschenburg space. We find evidence that a large N orbifold equivalence for the N=4 case continues from the M-theory limit to the weak-coupling limit. For the N=3 case, we find consistent large N equivalences involving a projection changing the nodes of the gauge groups, and also for a projection changing Chern-Simons levels where for the latter projection, the BPS monopole operators behave as expected in large N equivalence. For both cases we show, using the gravity dual, that the critical temperature of the confinement/deconfinement transition does not change and the entropy behaves as expected under the orbifold equivalence. We show that large N orbifold equivalence changing Chern-Simons levels can be explained using the planar equivalence in the mirror dual.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا