Do you want to publish a course? Click here

On uniqueness properties of solutions of the Toda and Kac-van Moerbeke hierarchies

102   0   0.0 ( 0 )
 Added by Gerald Teschl
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

We prove that a solution of the Toda lattice cannot decay too fast at two different times unless it is trivial. In fact, we establish this result for the entire Toda and Kac-van Moerbeke hierarchies.



rate research

Read More

In this paper we study uniqueness properties of solutions of the k-generalized Korteweg-de Vries equation. Our goal is to obtain sufficient conditions on the behavior of the difference $u_1-u_2$ of two solutions $u_1, u_2$ of the equation at two different times $t_0=0$ and $t_1=1$ which guarantee that $u_1equiv u_2$.
In this work we shall review some of our recent results concerning unique continuation properties of solutions of Schrodinger equations. In this equations we include linear ones with a time depending potential and semi-linear ones.
We prove that if $u_1,,u_2$ are solutions of the Benjamin-Ono equation defined in $ (x,t)inR times [0,T]$ which agree in an open set $Omegasubset R times [0,T]$, then $u_1equiv u_2$. We extend this uniqueness result to a general class of equations of Benjamin-Ono type in both the initial value problem and the initial periodic boundary value problem. This class of 1-dimensional non-local models includes the intermediate long wave equation. Finally, we present a slightly stronger version of our uniqueness results for the Benjamin-Ono equation.
127 - Xiaoyu Zeng , Yimin Zhang 2017
For a class of Kirchhoff functional, we first give a complete classification with respect to the exponent $p$ for its $L^2$-normalized critical points, and show that the minimizer of the functional, if exists, is unique up to translations. Secondly, we search for the mountain pass type critical point for the functional on the $L^2$-normalized manifold, and also prove that this type critical point is unique up to translations. Our proof relies only on some simple energy estimates and avoids using the concentration-compactness principles. These conclusions extend some known results in previous papers.
We show that the Hunter-Saxton equation $u_t+uu_x=frac14big(int_{-infty}^x dmu(t,z)- int^{infty}_x dmu(t,z)big)$ and $mu_t+(umu)_x=0$ has a unique, global, weak, and conservative solution $(u,mu)$ of the Cauchy problem on the line.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا