No Arabic abstract
Let $Lambda$ be a finite-dimensional algebra over a fixed algebraically closed field $mathbf{k}$ of arbitrary characteristic, and let $V$ be a finitely generated $Lambda$-module. It follows from results previously obtained by F.M. Bleher and the third author that $V$ has a well-defined versal deformation ring $R(Lambda, V)$, which is a complete local commutative Noetherian $mathbf{k}$-algebra with residue field $mathbf{k}$. The third author also proved that if $Lambda$ is a Gorenstein $mathbf{k}$-algebra and $V$ is a Cohen-Macaulay $Lambda$-module whose stable endomorphism ring is isomorphic to $mathbf{k}$, then $R(Lambda, V)$ is universal. In this article we prove that the isomorphism class of a versal deformation ring is preserved under singular equivalence of Morita type between Gorenstein $mathbf{k}$-algebras.
Let $mathbf{k}$ be a field of arbitrary characteristic, let $Lambda$ be a Gorenstein $mathbf{k}$-algebra, and let $V$ be an indecomposable finitely generated non-projective Gorenstein-projective left $Lambda$-module whose stable endomorphism ring is isomorphic to $mathbf{k}$. In this article, we prove that the universal deformation rings $R(Lambda,V)$ and $R(Lambda,Omega_Lambda V)$ are isomorphic, where $Omega_Lambda V$ denotes the first syzygy of $V$ as a left $Lambda$-module. We also prove the following result. Assume that $Gamma$ is another Gorenstein $mathbf{k}$-algebra such that there exists $ell geq 0$ and a pair of bimodules $({_Gamma}X_Lambda, {_Lambda}Y_Gamma)$ that induces a singular equivalence of Morita type with level $ell$ (as introduced by Z. Wang). Then the left $Gamma$-module $Xotimes_Lambda V$ is also Gorenstein-projective and the universal deformation rings $R(Gamma, Xotimes_Lambda V)$ and $R(Lambda, V)$ are isomorphic.
Let $mathbf{k}$ be an algebraically closed field, and let $Lambda$ be a finite dimensional $mathbf{k}$-algebra. We prove that if $Lambda$ is a Gorenstein algebra, then every finitely generated Cohen-Macaulay $Lambda$-module $V$ whose stable endomorphism ring is isomorphic to $mathbf{k}$ has a universal deformation ring $R(Lambda,V)$, which is a complete local commutative Noetherian $mathbf{k}$-algebra with residue field $mathbf{k}$, and which is also stable under taking syzygies. We investigate a particular non-self-injective Gorenstein algebra $Lambda_0$, which is of infinite global dimension and which has exactly three isomorphism classes of finitely generated indecomposable Cohen-Macaulay $Lambda_0$-modules $V$ whose stable endomorphism ring is isomorphic to $mathbf{k}$. We prove that in this situation, $R(Lambda_0,V)$ is isomorphic either to $mathbf{k}$ or to $mathbf{k}[[t]]/(t^2)$.
Let $mathbf{k}$ be a field of arbitrary characteristic, let $Lambda$ be a finite dimensional $mathbf{k}$-algebra, and let $V$ be a finitely generated $Lambda$-module. F. M. Bleher and the third author previously proved that $V$ has a well-defined versal deformation ring $R(Lambda,V)$. If the stable endomorphism ring of $V$ is isomorphic to $mathbf{k}$, they also proved under the additional assumption that $Lambda$ is self-injective that $R(Lambda,V)$ is universal. In this paper, we prove instead that if $Lambda$ is arbitrary but $V$ is Gorenstein-projective then $R(Lambda,V)$ is also universal when the stable endomorphism ring of $V$ is isomorphic to $mathbf{k}$. Moreover, we show that singular equivalences of Morita type (as introduced by X. W. Chen and L. G. Sun) preserve the isomorphism classes of versal deformation rings of finitely generated Gorenstein-projective modules over Gorenstein algebras. We also provide examples. In particular, if $Lambda$ is a monomial algebra in which there is no overlap (as introduced by X. W. Chen, D. Shen and G. Zhou) we prove that every finitely generated indecomposable Gorenstein-projective $Lambda$-module has a universal deformation ring that is isomorphic to either $mathbf{k}$ or to $mathbf{k}[![t]!]/(t^2)$.
The Morita equivalences of classical Brauer algebras and classical Birman-Murakami-Wenzl algebras have been well studied. Here we study the Morita equivalence problems on these two kinds of algebras of simply-laced type, especially for them with the generic parameters. We show that Brauer algebras and Birman-Murakami-Wenzl algebras of simply-laced type are Morita equivalent to the direct sums of some group algebras of Coxeter groups and some Hecke algebras of some Coxeter groups, respectively.
It is well-known that derived equivalences preserve tensor products and trivial extensions. We disprove both constructions for stable equivalences of Morita type.