Do you want to publish a course? Click here

Data Polygamy: The Many-Many Relationships among Urban Spatio-Temporal Data Sets

269   0   0.0 ( 0 )
 Added by Fernando Chirigati
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

The increasing ability to collect data from urban environments, coupled with a push towards openness by governments, has resulted in the availability of numerous spatio-temporal data sets covering diverse aspects of a city. Discovering relationships between these data sets can produce new insights by enabling domain experts to not only test but also generate hypotheses. However, discovering these relationships is difficult. First, a relationship between two data sets may occur only at certain locations and/or time periods. Second, the sheer number and size of the data sets, coupled with the diverse spatial and temporal scales at which the data is available, presents computational challenges on all fronts, from indexing and querying to analyzing them. Finally, it is non-trivial to differentiate between meaningful and spurious relationships. To address these challenges, we propose Data Polygamy, a scalable topology-based framework that allows users to query for statistically significant relationships between spatio-temporal data sets. We have performed an experimental evaluation using over 300 spatial-temporal urban data sets which shows that our approach is scalable and effective at identifying interesting relationships.



rate research

Read More

Data exchange is the problem of transforming data that is structured under a source schema into data structured under another schema, called the target schema, so that both the source and target data satisfy the relationship between the schemas. Even though the formal framework of data exchange for relational database systems is well-established, it does not immediately carry over to the settings of temporal data, which necessitates reasoning over unbounded periods of time. In this work, we study data exchange for temporal data. We first motivate the need for two views of temporal data: the concrete view, which depicts how temporal data is compactly represented and on which the implementations are based, and the abstract view, which defines the semantics of temporal data as a sequence of snapshots. We first extend the chase procedure for the abstract view to have a conceptual basis for the data exchange for temporal databases. Considering non-temporal source-to-target tuple generating dependencies and equality generating dependencies, the chase algorithm can be applied on each snapshot independently. Then we define a chase procedure (called c-chase) on concrete instances and show the result of c-chase on a concrete instance is semantically aligned with the result of chase on the corresponding abstract instance. In order to interpret intervals as constants while checking if a dependency or a query is satisfied by a concrete database, we will normalize the instance with respect to the dependency or the query. To obtain the semantic alignment, the nulls in the concrete view are annotated with temporal information. Furthermore, we show that the result of the concrete chase provides a foundation for query answering. We define naive evaluation on the result of the c-chase and show it produces certain answers.
We propose a spatio-temporal characterization of the entanglement dynamics in many-body localized (MBL) systems, which exhibits a striking resemblance with dynamical heterogeneities in classical glasses. Specifically, we find that the relaxation times of local entanglement, as measured by the concurrence, are spatially correlated giving rise to a dynamical correlation length for quantum entanglement. Our work provides a yet unrecognized connection between the behavior of classical glasses and the genuine quantum dynamics of MBL systems.
Large-area crop classification using multi-spectral imagery is a widely studied problem for several decades and is generally addressed using classical Random Forest classifier. Recently, deep convolutional neural networks (DCNN) have been proposed. However, these methods only achieved results comparable with Random Forest. In this work, we present a novel CNN based architecture for large-area crop classification. Our methodology combines both spatio-temporal analysis via 3D CNN as well as temporal analysis via 1D CNN. We evaluated the efficacy of our approach on Yolo and Imperial county benchmark datasets. Our combined strategy outperforms both classical as well as recent DCNN based methods in terms of classification accuracy by 2% while maintaining a minimum number of parameters and the lowest inference time.
Data mining has been widely recognized as a powerful tool to explore added value from large-scale databases. Finding frequent item sets in databases is a crucial in data mining process of extracting association rules. Many algorithms were developed to find the frequent item sets. This paper presents a summary and a comparative study of the available FP-growth algorithm variations produced for mining frequent item sets showing their capabilities and efficiency in terms of time and memory consumption on association rule mining by taking application of specific information into account. It proposes pattern growth mining paradigm based FP-tree growth algorithm, which employs a tree structure to compress the database. The performance study shows that the anti- FP-growth method is efficient and scalable for mining both long and short frequent patterns and is about an order of magnitude faster than the Apriority algorithm and also faster than some recently reported new frequent-pattern mining.
Networks are well-established representations of social systems, and temporal networks are widely used to study their dynamics. Temporal network data often consist in a succession of static networks over consecutive time windows whose length, however, is arbitrary, not necessarily corresponding to any intrinsic timescale of the system. Moreover, the resulting view of social network evolution is unsatisfactory: short time windows contain little information, whereas aggregating over large time windows blurs the dynamics. Going from a temporal network to a meaningful evolving representation of a social network therefore remains a challenge. Here we introduce a framework to that purpose: transforming temporal network data into an evolving weighted network where the weights of the links between individuals are updated at every interaction. Most importantly, this transformation takes into account the interdependence of social relationships due to the finite attention capacities of individuals: each interaction between two individuals not only reinforces their mutual relationship but also weakens their relationships with others. We study a concrete example of such a transformation and apply it to several data sets of social interactions. Using temporal contact data collected in schools, we show how our framework highlights specificities in their structure and temporal organization. We then introduce a synthetic perturbation into a data set of interactions in a group of baboons to show that it is possible to detect a perturbation in a social group on a wide range of timescales and parameters. Our framework brings new perspectives to the analysis of temporal social networks.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا