Do you want to publish a course? Click here

NLTE Analysis of High Resolution H-band Spectra. I. Neutral Silicon

264   0   0.0 ( 0 )
 Added by Sophia Zhang bo
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigated the reliability of our silicon atomic model and the influence of non-local thermodynamical equilibrium (NLTE) on the formation of neutral silicon (Si I) lines in the near-infrared (near-IR) H-band. We derived the differential Si abundances for 13 sample stars with high-resolution H-band spectra from the Apache Point Observatory Galactic Evolution Experiment (APOGEE), as well as from optical spectra, both under local thermodynamical equilibrium (LTE) and NLTE conditions. We found that the differences between the Si abundances derived from the H-band and from optical lines for the same stars are less than 0.1 dex when the NLTE effects included, and that NLTE reduces the line-to-line scatter in the H-band spectra for most sample stars. These results suggest that our Si atomic model is appropriate for studying the formation of H-band Si lines. Our calculations show that the NLTE corrections of the Si I H-band lines are negative, i.e. the final Si abundances will be overestimated in LTE. The corrections for strong lines depend on surface gravity, and tend to be larger for giants, reaching ~ -0.2 dex in our sample, and up to ~ -0.4 dex in extreme cases of APOGEE targets. Thus, the NLTE effects should be included in deriving silicon abundances from H-band Si I lines, especially for the cases where only strong lines are available.



rate research

Read More

Aiming at testing the validity of our magnesium atomic model and investigating the effects of non-local thermodynamical equilibrium (NLTE) on the formation of the H-band neutral magnesium lines, we derive the differential Mg abundances from selected transitions for 13 stars either adopting or relaxing the assumption of local thermodynamical equilibrium (LTE). Our analysis is based on high-resolution and high signal-to-noise ratio H-band spectra from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) and optical spectra from several instruments. The absolute differences between the Mg abundances derived from the two wavelength bands are always less than 0.1 dex in the NLTE analysis, while they are slightly larger for the LTE case. This suggests that our Mg atomic model is appropriate for investigating the NLTE formation of the H-band Mg lines. The NLTE corrections for the Mg I H-band lines are sensitive to the surface gravity, becoming larger for smaller log g values, and strong lines are more susceptible to departures from LTE. For cool giants, NLTE corrections tend to be negative, and for the strong line at 15765 AA they reach -0.14 dex in our sample, and up to -0.22 dex for other APOGEE stars. Our results suggest that it is important to include NLTE corrections in determining Mg abundances from the H-band Mg I transitions, especially when strong lines are used.
In this paper, we report our first-step results of high resolution He,textsc{i} 10830 AA narrow-band imaging (bandpass: 0.5 {AA}) of an M1.8 class two-ribbon flare on July 5, 2012. The flare was observed with the 1.6 meter aperture New Solar Telescope at Big Bear Solar Observatory. For this unique data set, sunspot dynamics during flaring were analyzed for the first time. By directly imaging the upper chromosphere, running penumbral waves are clearly seen as an outward extension of umbral flashes, both take the form of absorption in the 10830 AA narrow-band images. From a space-time image made of a slit cutting across a flare ribbon and the sunspot, we find that the dark lanes for umbral flashes and penumbral waves are obviously broadened after the flare. The most prominent feature is the sudden appearance of an oscillating absorption strip inside the ribbon when it sweeps into the sunspots penumbral and umbral regions. During each oscillation, outwardly propagating umbral flashes and subsequent penumbral waves rush out into the inwardly sweeping ribbon, followed by a returning of the absorption strip with similar speed. We tentatively explain the phenomena as the result of a sudden increase in the density of ortho-Helium atoms in the area of the sunspot being excited by the flares EUV illumination. This explanation is based on the observation that 10830 AA absorption around the sunspot area gets enhanced during the flare. Nevertheless, questions are still open and we need further well-devised observations to investigate the behavior of sunspot dynamics during flares.
Zirconium oxide(ZrO) is an important astrophysical molecule that defines the S-star classification class for cool giant stars. Accurate, empirical rovibronic energy levels, with associated labels and uncertainties, are reported for 9 low-lying electronic states of the diatomic 90Zr16O molecule. These 8088 empirical energy levels are determined using the Marvel (Measured Active Rotational-Vibrational Energy Levels) algorithm with 23 317 input assigned transition frequencies, 22 549 of which were validated. A temperature-dependent partition function is presented alongside updated spectroscopic constants for the 9 low-lying electronic states.
APOGEE has amassed the largest ever collection of multi-epoch, high-resolution (R~22,500), H-band spectra for B-type emission line (Be) stars. The 128/238 APOGEE Be stars for which emission had never previously been reported serve to increase the total number of known Be stars by ~6%. We focus on identification of the H-band lines and analysis of the emission peak velocity separations (v_p) and emission peak intensity ratios (V/R) of the usually double-peaked H I and non-hydrogen emission lines. H I Br11 emission is found to preferentially form in the circumstellar disks at an average distance of ~2.2 stellar radii. Increasing v_p toward the weaker Br12--Br20 lines suggests these lines are formed interior to Br11. By contrast, the observed IR Fe II emission lines present evidence of having significantly larger formation radii; distinctive phase lags between IR Fe II and H I Brackett emission lines further supports that these species arise from different radii in Be disks. Several emission lines have been identified for the first time including ~16895, a prominent feature in the spectra for almost a fifth of the sample and, as inferred from relatively large v_p compared to the Br11-Br20, a tracer of the inner regions of Be disks. Unlike the typical metallic lines observed for Be stars in the optical, the H-band metallic lines, such as Fe II 16878, never exhibit any evidence of shell absorption, even when the H I lines are clearly shell-dominated. The first known example of a quasi-triple-peaked Br11 line profile is reported for HD 253659, one of several stars exhibiting intra- and/or extra-species V/R and radial velocity variation within individual spectra. Br11 profiles are presented for all discussed stars, as are full APOGEE spectra for a portion of the sample.
We present a high-resolution (R ~ 50 000) atlas of a uranium-neon (U/Ne) hollow-cathode spectrum in the H-band (1454 nm to 1638 nm) for the calibration of near-infrared spectrographs. We obtained this U/Ne spectrum simultaneously with a laser-frequency comb spectrum, which we used to provide a first-order calibration to the U/Ne spectrum. We then calibrated the U/Ne spectrum using the recently-published uranium line list of Redman et al. (2011), which is derived from high-resolution Fourier transform spectrometer measurements. These two independent calibrations allowed us to easily identify emission lines in the hollow cathode lamp that do not correspond to known (classified) lines of either uranium or neon, and to compare the achievable precision of each source. Our frequency comb precision was limited by modal noise and detector effects, while the U/Ne precision was limited primarily by the signal-to-noise ratio (S/N) of the observed emission lines and our ability to model blended lines. The standard deviation in the dispersion solution residuals from the S/N-limited U/Ne hollow cathode lamp were 50% larger than the standard deviation of the dispersion solution residuals from the modal-noise-limited laser frequency comb. We advocate the use of U/Ne lamps for precision calibration of near-infrared spectrographs, and this H-band atlas makes these lamps significantly easier to use for wavelength calibration.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا