Do you want to publish a course? Click here

A revised moving cluster distance to the Pleiades open cluster

60   0   0.0 ( 0 )
 Added by Phillip Galli
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Aims: We provide a new distance estimate for the Pleiades based on the moving cluster method, which will be useful to further discuss the so-called Pleiades distance controversy and compare it with the very precise parallaxes from the Gaia space mission. Methods: We apply a refurbished implementation of the convergent point search method to an updated census of Pleiades stars to calculate the convergent point position of the cluster from stellar proper motions. Then, we derive individual parallaxes for 64 cluster members using radial velocities compiled from the literature, and approximate parallaxes for another 1146 stars based on the spatial velocity of the cluster. This represents the largest sample of Pleiades stars with individual distances to date. Results: The parallaxes derived in this work are in good agreement with previous results obtained in different studies (excluding Hipparcos) for individual stars in the cluster. We report a mean parallax of $7.44pm 0.08$~mas and distance of $134.4^{+2.9}_{-2.8}$pc that is consistent with the weighted mean of $135.0pm 0.6$pc obtained from the non-Hipparcos results in the literature. Conclusions: Our result for the distance to the Pleiades open cluster is not consistent with the Hipparcos catalog, but favors the recent and more precise distance determination of $136.2pm 1.2$pc obtained from Very Long Baseline Interferometry observations. It is also in good agreement with the mean distance of $133pm 5$pc obtained from the first trigonometric parallaxes delivered by the Gaia satellite for the brightest cluster members in common with our sample.



rate research

Read More

We have derived Fe abundances of 16 solar-type Pleiades dwarfs by means of an equivalent width analysis of Fe I and Fe II lines in high-resolution spectra obtained with the Hobby - Eberly Telescope and High Resolution Spectrograph. Abundances derived from Fe II lines are larger than those derived from Fe I lines (herein referred to as over-ionization) for stars with Teff < 5400 K, and the discrepancy (deltaFe = [Fe II/H] - [Fe I/H]) increases dramatically with decreasing Teff, reaching over 0.8 dex for the coolest stars of our sample. The Pleiades joins the open clusters M 34, the Hyades, IC 2602, and IC 2391, and the Ursa Major moving group, demonstrating ostensible over-ionization trends. The Pleiades deltaFe abundances are correlated with Ca II infrared triplet and Halpha chromospheric emission indicators and relative differences therein. Oxygen abundances of our Pleiades sample derived from the high-excitation O I triplet have been previously shown to increase with decreasing Teff, and a comparison with the deltaFe abundances suggests that the over-excitation (larger abundances derived from high excitation lines relative to low excitation lines) and over-ionization effects that have been observed in cool open cluster and disk field main sequence (MS) dwarfs share a common origin. Star-to-star Fe I abundances have low internal scatter, but the abundances of stars with Teff < 5400 K are systematically higher compared to the warmer stars. The cool star [Fe I/H] abundances cannot be connected directly to over-excitation effects, but similarities with the deltaFe and O I triplet trends suggest the abundances are dubious. Using the [Fe I/H] abundances of five stars with Teff > 5400 K, we derive a mean Pleiades cluster metallicity of [Fe/H] = +0.01 +/- 0.02.
We present a new technique designed to take full advantage of the high dimensionality (photometric, astrometric, temporal) of the DANCe survey to derive self-consistent and robust membership probabilities of the Pleiades cluster. We aim at developing a methodology to infer membership probabilities to the Pleiades cluster from the DANCe multidimensional astro-photometric data set in a consistent way throughout the entire derivation. The determination of the membership probabilities has to be applicable to censored data and must incorporate the measurement uncertainties into the inference procedure. We use Bayes theorem and a curvilinear forward model for the likelihood of the measurements of cluster members in the colour-magnitude space, to infer posterior membership probabilities. The distribution of the cluster members proper motions and the distribution of contaminants in the full multidimensional astro-photometric space is modelled with a mixture-of-Gaussians likelihood. We analyse several representation spaces composed of the proper motions plus a subset of the available magnitudes and colour indices. We select two prominent representation spaces composed of variables selected using feature relevance determination techniques based in Random Forests, and analyse the resulting samples of high probability candidates. We consistently find lists of high probability (p > 0.9975) candidates with $approx$ 1000 sources, 4 to 5 times more than obtained in the most recent astro-photometric studies of the cluster. The methodology presented here is ready for application in data sets that include more dimensions, such as radial and/or rotational velocities, spectral indices and variability.
We present optical photometry (i- and Z-band) and low-resolution spectroscopy (640-1015 nm) of very faint candidate members (J = 20.2-21.2 mag) of the Pleiades star cluster (120 Myr). The main goal is to address their cluster membership via photometric, astrometric, and spectroscopic studies, and to determine the properties of the least massive population of the cluster through the comparison of the data with younger and older spectral counterparts and state-of-the art model atmospheres. We confirm three bona-fide Pleiades members that have extremely red optical and infrared colors, effective temperatures of ~1150 K and ~1350 K, and masses in the interval 11-20 Mjup, and one additional likely member that shares the same motion as the cluster but does not appear to be as red as the other members with similar brightness. This latter object requires further near-infrared spectroscopy to fully address its membership in the Pleiades. The optical spectra of two bona-fide members were classified as L6-L7 and show features of KI, a tentative detection of CsI, hydrides and water vapor with an intensity similar to high-gravity dwarfs of related classification despite their young age. The properties of the Pleiades L6-L7 members clearly indicate that very red colors of L dwarfs are not a direct evidence of ages younger than ~100 Myr. We also report on the determination of the bolometric corrections for the coolest Pleiades members. These data can be used to interpret the observations of the atmospheres of exoplanets orbiting stars.
Young open clusters are ideal laboratories to understand star formation process. We present deep UBV I and Halpha photometry for the young open cluster IC 1590 in the center of the H II region NGC 281. Early-type members are selected from UBV photometric diagrams, and low-mass pre-main sequence (PMS) members are identified by using Halpha photometry. In addition, the published X-ray source list and Gaia astrometric data are also used to isolate probable members. A total of 408 stars are selected as members. The mean reddening obtained from early-type members is <E(B-V) = 0.40 +/- 0.06 (s.d.). We confirm the abnormal extinction law for the intracluster medium. The distance modulus to the cluster determined from the zero-age main-sequence fitting method is 12.3 +/- 0.2 mag (d = 2.88 +/- 0.28 kpc), which is consistent with the distance d = 2.70 ^+0.24 _-0.20 kpc from the recent Gaia parallaxes. We also estimate the ages and masses of individual members by means of stellar evolutionary models. The mode of the age of PMS stars is about 0.8 Myr. The initial mass function of IC 1590 is derived. It appears a steeper shape (Gamma = -1.49 +/- 0.14) than that of the Salpeter/Kroupa initial mass function for the high mass regime (m > 1 M_sun). The signature of mass segregation is detected from the difference in the slopes of the initial mass functions for the inner (r < 2.5) and outer region of this cluster. We finally discuss the star formation history in NGC 281.
The evolution of lithium abundance over a stars lifetime is indicative of transport processes operating in the stellar interior. We revisit the relationship between lithium content and rotation rate previously reported for cool dwarfs in the Pleiades cluster. We derive new LiI 670.8 nm equivalent width measurements from high-resolution spectra obtained for low-mass Pleiades members. We combine these new measurements with previously published ones, and use the Kepler/K2 rotational periods recently derived for Pleiades cool dwarfs to investigate the lithium-rotation connection in this 125 Myr-old cluster. The new data confirm the correlation between lithium equivalent width and stellar spin rate for a sample of 51 early K-type members of the cluster, where fast rotating stars are systematically lithium-rich compared to slowly rotating ones. The correlation is valid for all stars over the (J-Ks) color range 0.50-0.70 mag, corresponding to a mass range from about 0.75 to 0.90 solar mass, and may extend down to lower masses. We argue that the dispersion in lithium equivalent widths observed for cool dwarfs in the Pleiades cluster reflects an intrinsic scatter in lithium abundances, and suggest that the physical origin of the lithium dispersion pattern is to be found in the pre-main sequence rotational history of solar-type stars.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا