Do you want to publish a course? Click here

The rigidity of hypersurface in Euclidean space

63   0   0.0 ( 0 )
 Added by Chunhe Li
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

In the present paper, we revisit the rigidity of hypersurfaces in Euclidean space. We highlight Darboux equation and give new proof of rigidity of hypersurfaces by energy method and maximal principle.



rate research

Read More

For Legendre curves, we consider surfaces of revolution of frontals. The surface of revolution of a frontal can be considered as a framed base surface. We give the curvatures and basic invariants for surfaces of revolution by using the curvatures of Legendre curves. Moreover, we give properties of surfaces of revolution with singularities and cones.
95 - Keisuke Teramoto 2018
We characterize singularities of focal surfaces of wave fronts in terms of differential geometric properties of the initial wave fronts. Moreover, we study relationships between geometric properties of focal surfaces and geometric invariants of the initial wave fronts.
We introduce circular evolutes and involutes of framed curves in the Euclidean space. Circular evolutes of framed curves stem from the curvature circles of Bishop directions and singular value sets of normal surfaces of Bishop directions. On the other hand, involutes of framed curves are direct generalizations of involutes of regular space curves and frontals in the Euclidean plane. We investigate properties of normal surfaces, circular evolutes, and involutes of framed curves. We can observe that taking circular evolutes and involutes of framed curves are opposite operations under suitable assumptions, similarly to evolutes and involutes of fronts in the Euclidean plane. Furthermore, we investigate the relations among singularities of normal surfaces, circular evolutes, and involutes of framed curves.
In this paper we give local and global parametric classifications of a class of Einstein submanifolds of Euclidean space. The highlight is for submanifolds of codimension two since in this case our assumptions are only of intrinsic nature.
172 - Paul W.Y. Lee 2017
In this paper, we prove that principal circle bundles over the complex projective space equipped with the standard Sasakian structures are volume rigid among all $K$-contact manifolds satisfying positivity conditions of tensors involing the Tanaka-Webster curvature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا