No Arabic abstract
We propose to compute approximations to general invariant sets in dynamical systems by minimizing the distance between an appropriately selected finite set of points and its image under the dynamics. We demonstrate, through computational experiments that this approach can successfully converge to approximations of (maximal) invariant sets of arbitrary topology, dimension and stability as, e.g., saddle type invariant sets with complicated dynamics. We further propose to extend this approach by adding a Lennard-Jones type potential term to the objective function which yields more evenly distributed approximating finite point sets and perform corresponding numerical experiments.
We consider the motion of an electron in an atom subjected to a strong linearly polarized laser field. We identify the invariant structures organizing a very specific subset of trajectories, namely recollisions. Recollisions are trajectories which first escape the ionic core (i.e., ionize) and later return to this ionic core, for instance, to transfer the energy gained during the large excursion away from the core to bound electrons. We consider the role played by the directions transverse to the polarization direction in the recollision process. We compute the family of two-dimensional invariant tori associated with a specific hyperbolic-elliptic periodic orbit and their stable and unstable manifolds. We show that these manifolds organize recollisions in phase space.
Vortices are known to play a key role in the dynamics of the quantum trajectories defined within the framework of the de Broglie-Bohm formalism of quantum mechanics. It has been rigourously proved that the motion of a vortex in the associated velocity field can induce chaos in these trajectories, and numerical studies have explored the rich variety of behaviors that due to their influence can be observed. In this paper, we go one step further and show how the theory of dynamical systems can be used to construct a general and systematic classification of such dynamical behaviors. This should contribute to establish some firm grounds on which the studies on the intrinsic stochasticity of Bohms quantum trajectories can be based. An application to the two dimensional isotropic harmonic oscillator is presented as an illustration.
This paper deals with the computation of the largest robust control invariant sets (RCISs) of constrained nonlinear systems. The proposed approach is based on casting the search for the invariant set as a graph theoretical problem. Specifically, a general class of discrete-time time-invariant nonlinear systems is considered. First, the dynamics of a nonlinear system is approximated with a directed graph. Subsequently, the condition for robust control invariance is derived and an algorithm for computing the robust control invariant set is presented. The algorithm combines the iterative subdivision technique with the robust control invariance condition to produce outer approximations of the largest robust control invariant set at each iteration. Following this, we prove convergence of the algorithm to the largest RCIS as the iterations proceed to infinity. Based on the developed algorithms, an algorithm to compute inner approximations of the RCIS is also presented. A special case of input affine and disturbance affine systems is also considered. Finally, two numerical examples are presented to demonstrate the efficacy of the proposed method.
Let $(X,mathscr{B}, mu,T,d)$ be a measure-preserving dynamical system with exponentially mixing property, and let $mu$ be an Ahlfors $s$-regular probability measure. The dynamical covering problem concerns the set $E(x)$ of points which are covered by the orbits of $xin X$ infinitely many times. We prove that the Hausdorff dimension of the intersection of $E(x)$ and any regular fractal $G$ equals $dim_{rm H}G+alpha-s$, where $alpha=dim_{rm H}E(x)$ $mu$--a.e. Moreover, we obtain the packing dimension of $E(x)cap G$ and an estimate for $dim_{rm H}(E(x)cap G)$ for any analytic set $G$.
Complementary to existing applications of Lagrangian descriptors as an exploratory method, we use Lagrangian descriptors to find invariant manifolds in a system where some invariant structures have already been identified. In this case we use the parametrisation of a periodic orbit to construct a Lagrangian descriptor that will be locally minimised on its invariant manifolds. The procedure is applicable (but not limited) to systems with highly unstable periodic orbits, such as the isokinetic Chesnavich CH4+ model subject to a Hamiltonian isokinetic theromostat. Aside from its low computational requirements, the method enables us to study the invariant structures responsible for roaming in the isokinetic Chesnavich CH4+ model.