No Arabic abstract
We study single- and multi-quantum transitions of the nuclear spins of ionized arsenic donors in silicon and find quadrupolar effects on the coherence times, which we link to fluctuating electrical field gradients present after the application of light and bias voltage pulses. To determine the coherence times of superpositions of all orders in the 4-dimensional Hilbert space, we use a phase-cycling technique and find that, when electrical effects were allowed to decay, these times scale as expected for a field-like decoherence mechanism such as the interaction with surrounding $^{29}$Si nuclear spins.
Dopant atoms are ubiquitous in semiconductor technologies, providing the tailored electronic properties that underpin the modern digital information era. Harnessing the quantum nature of these atomic-scale objects represents a new and exciting technological revolution. In this article we describe the use of ion-implanted donor spins in silicon for quantum technologies. We review how to fabricate and operate single-atom spin qubits in silicon, obtaining some of the most coherent solid-state qubits, and we discuss pathways to scale up these qubits to build large quantum processors. Heavier group-V donors with large nuclear spins display electric quadrupole couplings that enable nuclear electric resonance, quantum chaos and strain sensing. Donor ensembles can be coupled to microwave cavities to develop hybrid quantum Turing machines. Counted, deterministic implantation of single donors, combined with novel methods for precision placement, will allow the integration of individual donors spins with industry-standard silicon fabrication processes, making implanted donors a prime physical platform for the second quantum revolution.
Electron spins are amongst the most coherent solid-state systems known, however, to be used in devices for quantum sensing and information processing applications, they must be typically placed near interfaces. Understanding and mitigating the impacts of such interfaces on the coherence and spectral properties of electron spins is critical to realize such applications, but is also challenging: inferring such data from single-spin studies requires many measurements to obtain meaningful results, while ensemble measurements typically give averaged results that hide critical information. Here, we report a comprehensive study of the coherence of near-surface bismuth donor spins in 28-silicon at millikelvin temperatures. In particular, we use strain-induced frequency shifts caused by a metallic electrode to make spatial maps of spin coherence as a function of depth and position relative to the electrode. By measuring magnetic-field-insensitive clock transitions we separate magnetic noise caused by surface spins from charge noise. Our results include quantitative models of the strain-split spin resonance spectra and extraction of paramagnetic impurity concentrations at the silicon surface. The interplay of these decoherence mechanisms for such near-surface electron spins is critical for their application in quantum technologies, while the combination of the strain splitting and clock transition extends the coherence lifetimes by up to two orders of magnitude, reaching up to 300 ms at a mean depth of only 100nm. The technique we introduce here to spatially map coherence in near-surface ensembles is directly applicable to other spin systems of active interest, such as defects in diamond, silicon carbide, and rare earth ions in optical crystals.
Despite the importance of isotopically purified samples in current experiments, there have been few corresponding studies of spin qubit decoherence using full quantum bath calculations. Isotopic purification eliminates the well-studied nuclear spin baths which usually dominate decoherence. We model the coherence of electronic spin qubits in silicon near so called Clock Transitions (CT) where experiments have electronic $T_{2e}$ times of seconds. Despite the apparent simplicity of the residual decoherence mechanism, this regime is not well understood: the state mixing which underpins CTs allows also a proliferation of contributions from usually forbidden channels (direct flip-flops with non-resonant spins); in addition, the magnitude and effects of the corresponding Overhauser fields and other detunings is not well quantified. For purely magnetic detunings, we identify a regime, potentially favourable for quantum computing, where forbidden channels are completely suppressed but spins in resonant states are fully released from Overhauser fields and applied magnetic field gradients. We show by a general argument that the enhancement between this regime and the high field limit is $< 8$, regardless of density, while enhancements of order 50 are measured experimentally. We propose that this discrepancy is likely to arise from strains of exclusively non-magnetic origin, underlining the potential of CTs for isolating and probing different types of inhomogeneities. We also identify a set of fields, Dipolar Refocusing Points (DRPs), where the Hahn echo fully refocuses the effect of the dipolar interaction.
The Stark shift of the hyperfine coupling constant is investigated for a P donor in Si far below the ionization regime in the presence of interfaces using Tight-binding and Band Minima Basis approaches and compared to the recent precision measurements. The TB electronic structure calculations included over 3 million atoms. In contrast to previous effective mass based results, the quadratic Stark coefficient obtained from both theories agrees closely with the experiments. This work represents the most sensitive and precise comparison between theory and experiment for single donor spin control. It is also shown that there is a significant linear Stark effect for an impurity near the interface, whereas, far from the interface, the quadratic Stark effect dominates. Such precise control of single donor spin states is required particularly in quantum computing applications of single donor electronics, which forms the driving motivation of this work.
We experimentally study the coupling of Group V donor spins in silicon to mechanical strain, and measure strain-induced frequency shifts which are linear in strain, in contrast to the quadratic dependence predicted by the valley repopulation model (VRM), and therefore orders of magnitude greater than that predicted by the VRM for small strains $|varepsilon| < 10^{-5}$. Through both tight-binding and first principles calculations we find that these shifts arise from a linear tuning of the donor hyperfine interaction term by the hydrostatic component of strain and achieve semi-quantitative agreement with the experimental values. Our results provide a framework for making quantitative predictions of donor spins in silicon nanostructures, such as those being used to develop silicon-based quantum processors and memories. The strong spin-strain coupling we measure (up to 150~GHz per strain, for Bi-donors in Si), offers a method for donor spin tuning --- shifting Bi donor electron spins by over a linewidth with a hydrostatic strain of order $10^{-6}$ --- as well as opportunities for coupling to mechanical resonators.