Do you want to publish a course? Click here

On the metallicity dependance of the [Y/Mg] - age relation for solar type stars

76   0   0.0 ( 0 )
 Added by Sofia Feltzing
 Publication date 2016
  fields Physics
and research's language is English
 Authors S. Feltzing




Ask ChatGPT about the research

Several recent studies of Solar twins in the Solar neighbourhood have shown a tight correlation between various elemental abundances and age, in particular [Y/Mg]. If this relation is real and valid for other types of stars as well as elsewhere in the Galaxy it would provide a very powerful tool to derive ages of stars without the need to resort to determining their masses (evolutionary stage) very precisely. The method would also likely work if the stellar parameters have relatively large errors. The studies presented in the recent literature span a narrow range of [Fe/H]. By studying a larger sample of Solar neighbourhood dwarfs with a much larger range in [Fe/H], we find that the relation between [Y/Mg] and age depends on the [Fe/H] of the stars. Hence, it appears that the [Y/Mg] - age relation is unique to Solar analogues.



rate research

Read More

Previously [Y/Mg] has been proven to be an age indicator for solar twins. Here, we investigate if this relation also holds for helium-core-burning stars of solar metallicity. High resolution and high signal-to-noise ratio (S/N) spectroscopic data of stars in the helium-core-burning phase have been obtained with the FIES spectrograph on the NOT 2.56m telescope and the HIRES spectrograph on the Keck I 10 m telescope. They have been analyzed to determine the chemical abundances of four open clusters with close to solar metallicity; NGC 6811, NGC 6819, M67 and NGC 188. The abundances are derived from equivalent widths of spectral lines using ATLAS9 model atmospheres with parameters determined from the excitation and ionization balance of Fe lines. Results from asteroseismology and binary studies were used as priors on the atmospheric parameters, where especially the $log g$ is determined to much higher precision than what is possible with spectroscopy. It is confirmed that the four open clusters are close to solar metallicity and they follow the [Y/Mg] vs. age trend previously found for solar twins. The [Y/Mg] vs. age clock also works for giant stars in the helium-core burning phase, which vastly increases the possibilities to estimate the age of stars not only in the solar neighborhood, but in large parts of the Galaxy, due to the brighter nature of evolved stars compared to dwarfs.
128 - J. K. Zhao , G. Zhao , Y. Q. Chen 2011
Based on high resolution and high signal-to-noise ratio (S/N) spectra analysis of 90 solar type stars, we have established several new metallicity calibrations in Teff range [5600, 6500] K based on red spectra with the wavelength range of 560-880 nm. The new metallicity calibrations are applied to determine the metallicity of solar analogs selected from SDSS spectra. There is a good consistent result with the adopted value presented in SDSS-DR7 and a small scatter of 0.26 dex for stars with S/N > 50 is obtained. This study provides a new reliable way to derive the metallicity for solar-like stars with low resolution spectra. In particular, our calibrations are useful for finding metal-rich stars, which are missing in SSPP.
Stellar ages are a crucial component to studying the evolution of the Milky Way. Using Gaia DR2 distance estimates, it is now possible to estimate stellar ages for a larger volume of evolved stars through isochrone matching. This work presents [M/H]-age and [$alpha$/M]-age relations derived for different spatial locations in the Milky Way disc. These relations are derived by hierarchically modelling the star formation history of stars within a given chemical abundance bin. For the first time, we directly observe that significant variation is apparent in the [M/H]-age relation as a function of both Galactocentric radius and distance from the disc mid-plane. The [M/H]-age relations support claims that radial migration has a significant effect in the plane of the disc. Using the [M/H] bin with the youngest mean age at each radial zone in the plane of the disc, the present-day metallicity gradient is measured to be $-0.059 pm 0.010$ dex kpc$^{-1}$, in agreement with Cepheids and young field stars. We find a vertically flared distribution of young stars in the outer disc, confirming predictions of models and previous observations. The mean age of the [M/H]-[$alpha$/M] distribution of the solar neighborhood suggests that the high-[M/H] stars are not an evolutionary extension of the low-$alpha$ sequence. Our observational results are important constraints to Galactic simulations and models of chemical evolution.
Using data from the GALAH survey, we explore the dependence of elemental abundances on stellar age and metallicity among Galactic disc stars. We find that the abundance of most elements can be predicted from age and [Fe/H] with an intrinsic scatter of about 0.03 dex. We discuss the possible causes for the existence of the abundance-age-metallicity relations. Using a stochastic chemical enrichment scheme based on the size of Supernovae remnants, we show the intrinsic scatter is expected to be small, about 0.05 dex or even smaller if there is additional mixing in the ISM. Elemental abundances show trends with both age and metallicity and the relationship is well described by a simple model in which the dependence of abundance ([X/Fe]) on age and [Fe/H] are additively separable. Elements can be grouped based on the direction of their abundance gradient in the (age,[Fe/H]) plane and different groups can be roughly associated with three distinct nucleosynthetic production sites, the exploding massive stars, the exploding white dwarfs and the AGB stars. However, the abundances of some elements, like Co, La, and Li, show large scatter for a given age and metallicity, suggesting processes other than simple Galactic chemical evolution are at play. We also compare the abundance trends of main-sequence turn-off stars against that of giants, whose ages were estimated using asteroseismic information from the K2 mission. For most elements, the trends of main-sequence turn-off stars are similar to that of giants. The existence of abundance relations implies that we can estimate the age and birth radius of disc stars, which is important for studying the dynamic and chemical evolution of the Galaxy.
104 - Tuan Do 2018
We present adaptive-optics assisted near-infrared high-spectral resolution observations of late-type giants in the nuclear star cluster of the Milky Way. The metallicity and elemental abundance measurements of these stars offer us an opportunity to understand the formation and evolution of the nuclear star cluster. In addition, their proximity to the supermassive black hole ($sim 0.5$ pc) offers a unique probe of the star formation and chemical enrichment in this extreme environment. We observed two stars identified by medium spectral-resolution observations as potentially having very high metallicities. We use spectral-template fitting with the PHOENIX grid and Bayesian inference to simultaneously constrain the overall metallicity, [M/H], alpha-element abundance [$alpha$/Fe], effective temperature, and surface gravity of these stars. We find that one of the stars has very high metallicity ([M/H] $> 0.6$) and the other is slightly above solar metallicity. Both Galactic center stars have lines from scandium (Sc), vanadium (V), and yttrium (Y) that are much stronger than allowed by the PHOENIX grid. We find, using the spectral synthesis code Spectroscopy Made Easy, that [Sc/Fe] may be an order of magnitude above solar. For comparison, we also observed an empirical calibrator in NGC6791, the highest metallicity cluster known ([M/H] $sim 0.4$). Most lines are well matched between the calibrator and the Galactic center stars, except for Sc, V, and Y, which confirms that their abundances must be anomalously high in these stars. These unusual abundances, which may be a unique signature of nuclear star clusters, offer an opportunity to test models of chemical enrichment in this region.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا