Do you want to publish a course? Click here

Spatial variations in the Milky Way disc metallicity-age relation

80   0   0.0 ( 0 )
 Added by Diane Feuillet
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Stellar ages are a crucial component to studying the evolution of the Milky Way. Using Gaia DR2 distance estimates, it is now possible to estimate stellar ages for a larger volume of evolved stars through isochrone matching. This work presents [M/H]-age and [$alpha$/M]-age relations derived for different spatial locations in the Milky Way disc. These relations are derived by hierarchically modelling the star formation history of stars within a given chemical abundance bin. For the first time, we directly observe that significant variation is apparent in the [M/H]-age relation as a function of both Galactocentric radius and distance from the disc mid-plane. The [M/H]-age relations support claims that radial migration has a significant effect in the plane of the disc. Using the [M/H] bin with the youngest mean age at each radial zone in the plane of the disc, the present-day metallicity gradient is measured to be $-0.059 pm 0.010$ dex kpc$^{-1}$, in agreement with Cepheids and young field stars. We find a vertically flared distribution of young stars in the outer disc, confirming predictions of models and previous observations. The mean age of the [M/H]-[$alpha$/M] distribution of the solar neighborhood suggests that the high-[M/H] stars are not an evolutionary extension of the low-$alpha$ sequence. Our observational results are important constraints to Galactic simulations and models of chemical evolution.



rate research

Read More

We investigate the stellar kinematics of the Galactic disc in 7 $<$ $R$ $<$ 13,kpc using a sample of 118,945 red giant branch (RGB) stars from LAMOST and Gaia. We characterize the median, dispersion and skewness of the distributions of the 3D stellar velocities, actions and orbital parameters across the age-metallicity and the disc $R$ -- $Z$ plane. Our results reveal abundant but clear stellar kinematic patterns and structures in the age -- metallicity and the disc $R$ -- $Z$ plane. The most prominent feature is the strong variations of the velocity, action, and orbital parameter distributions from the young, metal-rich thin disc to the old, metal-poor thick disc, a number of smaller-scale structures -- such as velocity streams, north-south asymmetries, and kinematic features of spiral arms -- are clearly revealed. Particularly, the skewness of $V_{phi}$ and $J_{phi}$ reveals a new substructure at $Rsimeq12$,kpc and $Zsimeq0$,kpc, possibly related to dynamical effects of spiral arms in the outer disc. We further study the stellar migration through analysing the stellar orbital parameters and stellar birth radii. The results suggest that the thick disc stars near the solar radii and beyond are mostly migrated from the inner disc of $Rsim4 - 6$,kpc due to their highly eccentrical orbits. Stellar migration due to dynamical processes with angular momentum transfer (churning) are prominent for both the old, metal-rich stars (outward migrators) and the young metal-poor stars (inward migrators). The spatial distribution in the $R$ -- $Z$ plane for the inward migrators born at a Galactocentric radius of $>$12,kpc show clear age stratifications, possibly an evidence that these inward migrators are consequences of splashes triggered by merger events of satellite galaxies that have been lasted in the past few giga years.
We study the relationship between age, metallicity, and alpha-enhancement of FGK stars in the Galactic disk. The results are based upon the analysis of high-resolution UVES spectra from the Gaia-ESO large stellar survey. We explore the limitations of the observed dataset, i.e. the accuracy of stellar parameters and the selection effects that are caused by the photometric target preselection. We find that the colour and magnitude cuts in the survey suppress old metal-rich stars and young metal-poor stars. This suppression may be as high as 97% in some regions of the age-metallicity relationship. The dataset consists of 144 stars with a wide range of ages from 0.5 Gyr to 13.5 Gyr, Galactocentric distances from 6 kpc to 9.5 kpc, and vertical distances from the plane 0 < |Z| < 1.5 kpc. On this basis, we find that i) the observed age-metallicity relation is nearly flat in the range of ages between 0 Gyr and 8 Gyr; ii) at ages older than 9 Gyr, we see a decrease in [Fe/H] and a clear absence of metal-rich stars; this cannot be explained by the survey selection functions; iii) there is a significant scatter of [Fe/H] at any age; and iv) [Mg/Fe] increases with age, but the dispersion of [Mg/Fe] at ages > 9 Gyr is not as small as advocated by some other studies. In agreement with earlier work, we find that radial abundance gradients change as a function of vertical distance from the plane. The [Mg/Fe] gradient steepens and becomes negative. In addition, we show that the inner disk is not only more alpha-rich compared to the outer disk, but also older, as traced independently by the ages and Mg abundances of stars.
Using a sample of red giant stars from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) Data Release 16, we infer the conditional distribution $p([alpha/text{Fe}],|,[text{Fe/H}])$ in the Milky Way disk for the $alpha$-elements Mg, O, Si, S, and Ca. In each bin of [Fe/H] and Galactocentric radius $R$, we model $p([alpha/text{Fe}])$ as a sum of two Gaussians, representing low-$alpha$ and high-$alpha$ populations with scale heights $z_1=0.45,text{kpc}$ and $z_2=0.95,text{kpc}$, respectively. By accounting for age-dependent and $z$-dependent selection effects in APOGEE, we infer the [$alpha$/Fe] distributions that would be found for a fair sample of long-lived stars covering all $z$. Near the Solar circle, this distribution is clearly bimodal at sub-solar [Fe/H], with the low-$alpha$ and high-$alpha$ peaks separated by a valley that is $sim 3$ times lower. In agreement with previous results, we find that the high-$alpha$ population is more prominent at smaller $R$, lower [Fe/H], and larger $|z|$, and that the sequence separation is smaller for Si and Ca than for Mg, O, and S. We find significant intrinsic scatter in [$alpha$/Fe] at fixed [Fe/H] for both the low-$alpha$ and high-$alpha$ populations, typically $sim 0.04$-dex. The means, dispersions, and relative amplitudes of this two-Gaussian description, and the dependence of these parameters on $R$, [Fe/H], and $alpha$-element, provide a quantitative target for chemical evolution models and a test for hydrodynamic simulations of disk galaxy formation. We argue that explaining the observed bimodality will probably require one or more sharp transitions in the disks gas accretion, star formation, or outflow history in addition to radial mixing of stellar populations.
128 - H. J. Rocha-Pinto 2006
We studied the relationship between the average stellar abundance of several elements and the orbital evolution of stars in the neighbourhood of the Sun, using both observational data for 325 late-type dwarfs in a volume-complete sample and simulations of the orbital diffusion. Metallicities, ages, and initial position and velocities for the simulated stars are sampled from empirical distributions of these quantities in the Milky Way. We found that that there is a relationship between the average stellar abundance of Fe, Na, Si, Ca, Ni, and Ba and the mean orbital radius of stars currently passing through the solar neighbourhood. The greater the difference between the mean orbital radius and the solar Galactocentric distance, the more deficient the star is, on average, in these chemical species. The stars that take a longer time to come from their birthplaces to arrive in the present solar neighbourhood are more likely to be more metal-poor than those that were born here. This result is a direct, independent indication that a tightly defined Galactic age-metallicity relation exists.
Asteroseismology is a promising tool to study Galactic structure and evolution because it can probe the ages of stars. Earlier attempts comparing seismic data from the {it Kepler} satellite with predictions from Galaxy models found that the models predicted more low-mass stars compared to the observed distribution of masses. It was unclear if the mismatch was due to inaccuracies in the Galactic models, or the unknown aspects of the selection function of the stars. Using new data from the K2 mission, which has a well-defined selection function, we find that an old metal-poor thick disc, as used in previous Galactic models, is incompatible with the asteroseismic information. We show that spectroscopic measurements of [Fe/H] and [$alpha$/Fe] elemental abundances from the GALAH survey indicate a mean metallicity of $log (Z/Z_{odot})=-0.16$ for the thick disc. Here $Z$ is the effective solar-scaled metallicity, which is a function of [Fe/H] and [$alpha$/Fe]. With the revised disc metallicities, for the first time, the theoretically predicted distribution of seismic masses show excellent agreement with the observed distribution of masses. This provides an indirect verification of the asteroseismic mass scaling relation is good to within five percent. Using an importance-sampling framework that takes the selection function into account, we fit a population synthesis model of the Galaxy to the observed seismic and spectroscopic data. Assuming the asteroseismic scaling relations are correct, we estimate the mean age of the thick disc to be about 10 Gyr, in agreement with the traditional idea of an old $alpha$-enhanced thick disc.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا