No Arabic abstract
In this paper we analyze a dark matter model inspired by theories with extra dimensions. The dark matter candidate corresponds to the first Kaluza-Klein mode of a real scalar added to the Standard Model. The tower of new particles enriches the calculation of the relic abundance. For large mass splitting, the model converges to the predictions of the inert singlet dark matter model. For nearly degenerate mass spectrum, coannihilations increase the cross-sections used for direct and indirect dark matter searches. Moreover, the Kaluza-Klein zero mode can mix with the SM higgs and further constraints can be applied.
We study a two scalar inert doublet model (IDMS$_3$) which is stabilized by a $S_3$ symmetry. We consider two scenarios: i) two of the scalars in each charged sector are mass degenerated due to a residual $Z_2$ symmetry, ii) there is no mass degeneracy because of the introduction of soft terms that break the $Z_2$ symmetry. We show that both scenarios provide good dark matter candidates for some range of parameters.
The null results in dark matter direct detection experiments imply the present scalar dark matter (DM) annihilation cross section to bottom quark pairs through the Higgs boson exchange is smaller than about $10^{-31}$ cm$^3/$s for a wide DM mass range, which is much smaller than the required annihilation cross section for thermal relic DM. We propose models of a thermal relic DM with the present annihilation cross section being very suppressed. This property can be realized in an extra $U(1)$ gauge interacting complex scalar DM, where the thermal DM abundance is determined by coannihilation through the gauge interaction while the present annihilation is governed by Higgs bosons exchange processes. An interaction between DM and the extra $U(1)$ breaking Higgs field generates a small mass splitting between DM and its coannihilating partner so that coannihilation becomes possible and also the $Z$-mediated scattering off with a nucleon in direct DM search becomes inelastic. We consider scalar dark matter in $U(1)_{B-L}, U(1)_{(B-L)_3}$ and $U(1)_{L_mu-L_tau}$ extended models and identify viable parameter regions. We also discuss various implications to future DM detection experiments, the DM interpretation of the gamma-ray excess in the globular cluster 47 Tucanae, the muon anomalous magnetic moment, the Hubble tension and others.
We present a model for dark matter with extra spatial dimensions in which Standard-Model (SM) fermions have localized wave functions. The underlying gauge group is $G_{rm SM} otimes {rm U}(1)_z$, and the dark matter particle is a SM-singlet Dirac fermion, $chi$, which is charged under the ${rm U}(1)_z$ gauge symmetry. We show that the conventional wisdom that the mass of a Dirac fermion is naturally at the ultraviolet cutoff scale does not hold in this model. We further demonstrate that this model yields a dark matter relic abundance in agreement with observation and discuss constraints from direct and indirect searches for dark matter. The dark matter particle interacts weakly with matter and has negligibly small self-interactions. Very good fits to data from cosmological observations and experimental dark matter searches are obtained with $m_chi$ in the multi-TeV range. A discussion is given of observational signatures and experimental tests of the model.
Phenomenological studies of Flavored Dark Matter (FDM) models often have to assume a near-diagonal flavor structure in the coupling matrix in order to remain consistent with bounds from flavor violating processes. In this paper we show that for Lepton FDM, such a structure can naturally arise from an extra dimensional setup. The extra dimension is taken to be flat, with the dark matter and mediator fields confined to a brane on one end of the extra dimension, and the Higgs field to a brane on the other end. The Standard Model fermion and gauge fields are the zero modes of corresponding bulk fields with appropriate boundary conditions. Global flavor symmetries exist in the bulk and on the FDM brane, while they are broken on the Higgs brane. Flavor violating processes arise due to the misalignment of bases for which the interactions on the two branes are diagonalized, and their size can be controlled by a choice of the lepton profiles along the extra dimension. By studying the parameter space for the model, we show that when relic abundance and indirect detection constraints are satisfied, the rates for flavor violating processes such as $muto egamma$ remain far below the experimental limits.
One of the simplest viable models for dark matter is an additional neutral scalar, stabilised by a $mathbb{Z}_2$ symmetry. Using the GAMBIT package and combining results from four independent samplers, we present Bayesian and frequentist global fits of this model. We vary the singlet mass and coupling along with 13 nuisance parameters, including nuclear uncertainties relevant for direct detection, the local dark matter density, and selected quark masses and couplings. We include the dark matter relic density measured by Planck, direct searches with LUX, PandaX, SuperCDMS and XENON100, limits on invisible Higgs decays from the Large Hadron Collider, searches for high-energy neutrinos from dark matter annihilation in the Sun with IceCube, and searches for gamma rays from annihilation in dwarf galaxies with the Fermi-LAT. Viable solutions remain at couplings of order unity, for singlet masses between the Higgs mass and about 300 GeV, and at masses above $sim$1 TeV. Only in the latter case can the scalar singlet constitute all of dark matter. Frequentist analysis shows that the low-mass resonance region, where the singlet is about half the mass of the Higgs, can also account for all of dark matter, and remains viable. However, Bayesian considerations show this region to be rather fine-tuned.