Do you want to publish a course? Click here

Determination of hole g-factor in InAs/InGaAs/InAlAs quantum wells by magneto-photoluminescence studies

143   0   0.0 ( 0 )
 Added by Sergey Ganichev
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Circularly-polarized magneto-photoluminescence (magneto-PL) technique has been applied to investigate Zeeman effect in InAs/InGaAs/InAlAs quantum wells (QWs) in Faraday geometry. Structures with different thickness of the QW barriers have been studied in magnetic field parallel and tilted with respect to the sample normal. Effective electron-hole g-factor has been found by measurement of splitting of polarized magneto-PL lines. Lande factors of electrons have been calculated using the 14-band kp method and g-factor of holes was determined by subtracting the calculated contribution of the electrons from the effective electron-hole g-factor. Anisotropy of the hole g-factor has been studied applying tilted magnetic field.

rate research

Read More

87 - E. Diez , n S. Avesque 2006
We designed and performed low temperature DC transport characterization studies on two-dimensional electron gases confined in lattice-matched In$_{0.53}$Ga$_{0.47}$As/In$_{0.52}$Al$_{0.48}$As quantum wells grown by molecular beam epitaxy on InP substrates. The nearly constant mobility for samples with the setback distance larger than 50nm and the similarity between the quantum and transport life-time suggest that the main scattering mechanism is due to short range scattering, such as alloy scattering, with a scattering rate of 2.2 ps$^{-1}$. We also obtain the Fermi level at the In$_{0.53}$Ga$_{0.47}$As/In$_{0.52}$Al$_{0.48}$As surface to be 0.36eV above the conduction band, when fitting our experimental densities with a Poisson-Schrodinger model.
We observe an unusual behavior of the low-temperature magnetoresistance of the high-mobility two-dimensional electron gas in InGaAs/InAlAs quantum wells in weak perpendicular magnetic fields. The observed magnetoresistance is qualitatively similar to that expected for the weak localization and anti-localization but its quantity exceeds significantly the scale of the quantum corrections. The calculations show that the obtained data can be explained by the classical effects in electron motion along the open orbits in a quasiperiodic potential relief manifested by the presence of ridges on the quantum well surface.
We determine the effective $g$-factor ($|g^ast|$) of a two-dimensional electron gas (2DEG) using a new method based on capacitance spectroscopy. The capacitance-voltage profile of a 2DEG in an InAs/AlGaSb quantum well measured in an in-plane magnetic field shows a double-step feature that indicates the Zeeman splitting of the subband edge. The method allows for simultaneous and independent determination of $|g^ast|$ and effective mass $m^ast$. Data suggest that the biaxial tensile strain in the InAs layer has considerable impacts on both $m^ast$ and $g^ast$. Our method provides a means to determine $|g^ast|$ that is complementary to the commonly used coincidence technique.
InGaAs/GaAsBi/InGaAs quantum wells (QWs) were grown on GaAs substrates by gas source molecular beam epitaxy for realizing the type II band-edge line-up. Both type I and type II transitions were observed in the Bi containing W QWs and the photoluminescence intensity was enhanced in the sample with a high Bi content, which is mainly due to the improvement of carrier confinement. Blue-shift of type II transitions at high excitation power density was observed and ascribed to the band-bending effect. The calculated transition energies based on 8 band k.p model fit well with the experiment results. The experimental and theoretical results show that the type-II QW design is a new promising candidate for realizing long wavelength GaAs-based light emitting devices near 1.3 um.
We have studied a series of InAs/GaSb coupled quantum wells using magneto-infrared spectroscopy for high magnetic fields up to 33T within temperatures ranging from 4K to 45K in both Faraday and tilted field geometries. This type of coupled quantum wells consists of an electron layer in the InAs quantum well and a hole layer in the GaSb quantum well, forming the so-called two dimensional electron-hole bilayer system. Unlike the samples studied in the past, the hybridization of the electron and hole subbands in our samples is largely reduced by having narrower wells and an AlSb barrier layer interposed between the InAs and the GaSb quantum wells, rendering them weakly hybridized. Previous studies have revealed multiple absorption modes near the electron cyclotron resonance of the InAs layer in moderately and strongly hybridized samples, while only a single absorption mode was observed in the weakly hybridized samples. We have observed a pair of absorption modes occurring only at magnetic fields higher than 14T, which exhibited several interesting phenomena. Among which we found two unique types of behavior that distinguishes this work from the ones reported in the literature. This pair of modes is very robust against rising thermal excitations and increasing magnetic fields alligned parallel to the heterostructures. While the previous results were aptly explained by the antilevel crossing gap due to the hybridization of the electron and hole wavefunctions, i.e. conduction-valence Landau level mixing, the unique features reported in this paper cannot be explained within the same concept. The unusual properties found in this study and their connection to the known models for InAs/GaSb heterostructures will be disccused; in addition, several alternative ideas will be proposed in this paper and it appears that a spontaneous phase separation can account for most of the observed features.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا