Do you want to publish a course? Click here

Some conjectures on the asymptotic behavior of Gromov-Witten invariants

106   0   0.0 ( 0 )
 Added by Aleksey Zinger
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

The purpose of this note is to share some observations and speculations concerning the asymptotic behavior of Gromov-Witten invariants. They may be indicative of some deep phenomena in symplectic topology that in full generality are outside of the reach of current techniques. On the other hand, many interesting cases can perhaps be treated via combinatorial techniques.



rate research

Read More

140 - Boris Dubrovin , Di Yang 2017
We propose a conjectural explicit formula of generating series of a new type for Gromov--Witten invariants of $mathbb{P}^1$ of all degrees in full genera.
134 - Sarah McConnell 2021
We show that it is possible to define the contribution of degree one covers of a disk to open Gromov-Witten invariants. We build explicit sections of obstruction bundles in order to extend the algebro-geometric techniques of Pandharipande to the case of domains with boundary.
96 - Yixian Wu 2021
We prove a splitting formula that reconstructs the logarithmic Gromov- Witten invariants of simple normal crossing varieties from the punctured Gromov- Witten invariants of their irreducible components, under the assumption of the gluing strata being toric varieties. The formula is based on the punctured Gromov-Witten theory developed in arXiv:2009.07720.
We study relative Gromov-Witten theory via universal relations provided by the interaction of degeneration and localization. We find relative Gromov-Witten theory is completely determined by absolute Gromov-Witten theory. The relationship between the relative and absolute theories is guided by a strong analogy to classical topology. As an outcome, we present a mathematical determination of the Gromov-Witten invariants (in all genera) of the Calabi-Yau quintic 3-fold in terms of known theories.
We use a topological framework to study descendent Gromov-Witten theory in higher genus, non-toric settings. Two geometries are considered: surfaces of general type and the Enriques Calabi-Yau threefold. We conjecture closed formulas for surfaces of general type in classes K and 2K. For the Enriques Calabi-Yau, Gromov-Witten invariants are calculated in genus 0, 1, and 2. In genus 2, the holomorphic anomaly equation is found.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا