Do you want to publish a course? Click here

Bow-shock Pulsar Wind Nebulae Passing Through Density Discontinuities

68   0   0.0 ( 0 )
 Added by DooSoo Yoon
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Bow-shock pulsar wind nebulae are a subset of pulsar wind nebulae that form when the pulsar has high velocity due to the natal kick during the supernova explosion. The interaction between the relativistic wind from the fast-moving pulsar and the interstellar medium produces a bow-shock and a trail, which are detectable in H$_{alpha}$ emission. Among such bow-shock pulsar wind nebulae, the Guitar Nebula stands out for its peculiar morphology, which consists of a prominent bow-shock head and a series of bubbles further behind. We present a scenario in which multiple bubbles can be produced when the pulsar encounters a series of density discontinuities in the ISM. We tested the scenario using 2-D and 3-D hydrodynamic simulations. The shape of the guitar nebula can be reproduced if the pulsar traversed a region of declining low density. We also show that if a pulsar encounters an inclined density discontinuity, it produces an asymmetric bow-shock head, consistent with observations of the bow-shock of the millisecond pulsar J2124-3358.



rate research

Read More

79 - N. Bucciantini 2018
The detection of bright X-ray features and large TeV halos around old pulsars that have escaped their parent Supernova Remnants and are interacting directly with the ISM, suggest that high energy particles, more likely high energy pairs, can escape from these systems, and that this escape if far more complex than a simple diffusive model can predict. Here we present for the first time a detailed analysis of how high energy particles escape from the head of the bow shock. In particular we focus our attention on the role of the magnetic field geometry, and the inclination of the pulsar spin axis with respect to the direction of the pulsar kick velocity. We show that asymmetries in the escape pattern of charged particles are common, and they are strongly energy dependent. More interestingly we show that the flow of particles from bow-shock pulsar wind nebulae is likely to be charge separated, which might have profound consequences on the way such flow interacts with the ISM magnetic field, driving local turbulence.
176 - N. Bucciantini 2018
Bow Shock Pulsar Wind Nebulae are a class of non-thermal sources, that form when the wind of a pulsar moving at supersonic speed interacts with the ambient medium, either the ISM or in a few cases the cold ejecta of the parent supernova. These systems have attracted attention in recent years, because they allow us to investigate the properties of the pulsar wind in a different environment from that of canonical Pulsar Wind Nebulae in Supernova Remnants. However, due to the complexity of the interaction, a full-fledged multidimensional analysis is still laking. We present here a simplified approach, based on Lagrangian tracers, to model the magnetic field structure in these systems, and use it to compute the magnetic field geometry, for various configurations in terms of relative orientation of the magnetic axis, pulsar speed and observer direction. Based on our solutions we have computed a set of radio emission maps, including polarization, to investigate the variety of possible appearances, and how the observed emission pattern can be used to constrain the orientation of the system, and the possible presence of turbulence.
68 - N. Bucciantini 2020
Pulsars out of their parent SNR directly interact with the ISM producing so called Bow-Shock Pulsar Wind Nebulae, the relativistic equivalents of the heliosphere/heliotail system. These have been directly observed from Radio to X-ray, and are found also associated to TeV halos, with a large variety of morphologies. They offer a unique environment where the pulsar wind can be studied by modelling its interaction with the surrounding ambient medium, in a fashion that is different/complementary from the canonical Plerions. These systems have also been suggested as the possible origin of the positron excess detected by AMS and PAMELA, in contrast to dark matter. I will present results from 3D Relativistic MHD simulations of such nebulae. On top of these simulations we computed the expected emission signatures, the properties of high energy particle escape, the role of current sheets in channeling cosmic rays, the level of turbulence and magnetic amplification, and how they depend on the wind structure and magnetisation.
70 - M. Lemoine 2016
Successful phenomenological models of pulsar wind nebulae assume efficient dissipation of the Poynting flux of the magnetized electron-positron wind as well as efficient acceleration of the pairs in the vicinity of the termination shock, but how this is realized is not yet well understood. The present paper suggests that the corrugation of the termination shock, at the onset of non-linearity, may lead towards the desired phenomenology. Non-linear corrugation of the termination shock would convert a fraction of order unity of the incoming ordered magnetic field into downstream turbulence, slowing down the flow to sub-relativistic velocities. The dissipation of turbulence would further preheat the pair population on short length scales, close to equipartition with the magnetic field, thereby reducing the initial high magnetization to values of order unity. Furthermore, it is speculated that the turbulence generated by the corrugation pattern may sustain a relativistic Fermi process, accelerating particles close to the radiation reaction limit, as observed in the Crab nebula. The required corrugation could be induced by the fast magnetosonic modes of downstream nebular turbulence; but it could also be produced by upstream turbulence, either carried by the wind or seeded in the precursor by the accelerated particles themselves.
128 - D. Volpi 2009
The main goal of our present work is to provide, for the first time, a simple computational tool that can be used to compute the brightness, the spectral index, the polarization, the time variability and the spectrum of the non-thermal light (both synchrotron and inverse Compton, IC) associated with the plasma dynamics resulting from given relativistic magnetohydrodynamics (RMHD) simulations. The proposed method is quite general, and can be applied to any scheme for RMHD and to all non-thermal emitting sources, e.g. pulsar wind nebulae (PWNe), and in particular to the Crab Nebula (CN) as in the present proceeding. Here only the linear optical and X-ray polarization that characterizes the PWNe synchrotron emission is analyzed in order to infer information on the inner bulk flow structure, to provide a direct investigation of the magnetic field configuration, in particular the presence and the strength of a poloidal component, and to understand the origin of some emitting features, such as the knot, whose origins are still uncertain. The inverse Compton radiation is examined to disentangle the different contributions to radiation from the magnetic field and the particle energy distribution function, and to search for a possible hadronic component in the emitting PWN, and thus for the presence of ions in the wind. If hadronic radiation was found in a PWN, young supernova remnants would provide a natural birth-place of the cosmic-rays (CRs) up to the so-called knee in the CR spectrum.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا