Do you want to publish a course? Click here

Formation and maintenance of nitrogen fixing cell patterns in filamentous cyanobacteria

63   0   0.0 ( 0 )
 Added by Sa\\'ul Ares
 Publication date 2016
  fields Biology Physics
and research's language is English




Ask ChatGPT about the research

Cyanobacteria forming one-dimensional filaments are paradigmatic model organisms of the transition between unicellular and multicellular living forms. Under nitrogen limiting conditions, in filaments of the genus Anabaena, some cells differentiate into heterocysts, which lose the possibility to divide but are able to fix environmental nitrogen for the colony. These heterocysts form a quasi-regular pattern in the filament, representing a prototype of patterning and morphogenesis in prokaryotes. Recent years have seen advances in the identification of the molecular mechanism regulating this pattern. We use this data to build a theory on heterocyst pattern formation, for which both genetic regulation and the effects of cell division and filament growth are key components. The theory is based on the interplay of three generic mechanisms: local autoactivation, early long range inhibition, and late long range inhibition. These mechanisms can be identified with the dynamics of hetR, patS and hetN expression. Our theory reproduces quantitatively the experimental dynamics of pattern formation and maintenance for wild type and mutants. We find that hetN alone is not enough to play the role as the late inhibitory mechanism: a second mechanism, hypothetically the products of nitrogen fixation supplied by heterocysts, must also play a role in late long range inhibition. The preponderance of even intervals between heterocysts arises naturally as a result of the interplay between the timescales of genetic regulation and cell division. We also find that a purely stochastic initiation of the pattern, without a two-stage process, is enough to reproduce experimental observations.



rate research

Read More

Measurements on embryonic epithelial tissues in a diverse range of organisms have shown that the statistics of cell neighbor numbers are universal in tissues where cell proliferation is the primary cell activity. Highly simplified non-spatial models of proliferation are claimed to accurately reproduce these statistics. Using a systematic critical analysis, we show that non-spatial models are not capable of robustly describing the universal statistics observed in proliferating epithelia, indicating strong spatial correlations between cells. Furthermore we show that spatial simulations using the Subcellular Element Model are able to robustly reproduce the universal histogram. In addition these simulations are able to unify ostensibly divergent experimental data in the literature. We also analyze cell neighbor statistics in early stages of chick embryo development in which cell behaviors other than proliferation are important. We find from experimental observation that cell neighbor statistics in the primitive streak region, where cell motility and ingression are also important, show a much broader distribution. A non-spatial Markov process model provides excellent agreement with this broader histogram indicating that cells in the primitive streak may have significantly weaker spatial correlations. These findings show that cell neighbor statistics provide a potentially useful signature of collective cell behavior.
134 - Dayun Yan , Haitao Cui , Wei Zhu 2017
Hydrogen peroxide (H2O2) is an important signaling molecule in cancer cells. However, the significant secretion of H2O2 by cancer cells have been rarely observed. Cold atmospheric plasma (CAP) is a near room temperature ionized gas composed of neutral particles, charged particles, reactive species, and electrons. Here, we first demonstrated that breast cancer cells and pancreatic adenocarcinoma cells generated micromolar level H2O2 during just 1 min of direct CAP treatment on these cells. The cell-based H2O2 generation is affected by the medium volume, the cell confluence, as well as the discharge voltage. The application of cold atmospheric plasma (CAP) in the cancer treatment has been intensively investigated over the past decade. Several cellular responses to the CAP treatment have been observed including the consumption of the CAP-originated reactive species, the rise of intracellular reactive oxygen species, the damage on DNA and mitochondria, as well as the activation of apoptotic events. This is a new previously unknown cellular response to CAP, which provides a new prospective to understand the interaction between CAP and cells.
231 - Pascal R Buenzli 2014
The formation of new bone involves both the deposition of bone matrix, and the formation of a network of cells embedded within the bone matrix, called osteocytes. Osteocytes derive from bone-synthesising cells (osteoblasts) that become buried in bone matrix during bone deposition. The generation of osteocytes is a complex process that remains incompletely understood. Whilst osteoblast burial determines the density of osteocytes, the expanding network of osteocytes regulates in turn osteoblast activity and osteoblast burial. In this paper, a spatiotemporal continuous model is proposed to investigate the osteoblast-to-osteocyte transition. The aims of the model are (i) to link dynamic properties of osteocyte generation with properties of the osteocyte network imprinted in bone, and (ii) to investigate Marottis hypothesis that osteocytes prompt the burial of osteoblasts when they become covered with sufficient bone matrix. Osteocyte density is assumed in the model to be generated at the moving bone surface by a combination of osteoblast density, matrix secretory rate, rate of entrapment, and curvature of the bone substrate, but is found to be determined solely by the ratio of the instantaneous burial rate and matrix secretory rate. Osteocyte density does not explicitly depend on osteoblast density nor curvature. Osteocyte apoptosis is also included to distinguish between the density of osteocyte lacuna and the density of live osteocytes. Experimental measurements of osteocyte lacuna densities are used to estimate the rate of burial of osteoblasts in bone matrix. These results suggest that: (i) burial rate decreases during osteonal infilling, and (ii) the control of osteoblast burial by osteocytes is likely to emanate as a collective signal from a large group of osteocytes, rather than from the osteocytes closest to the bone deposition front.
Cells crawling through tissues migrate inside a complex fibrous environment called the extracellular matrix (ECM), which provides signals regulating motility. Here we investigate one such well-known pathway, involving mutually antagonistic signalling molecules (small GTPases Rac and Rho) that control the protrusion and contraction of the cell edges (lamellipodia). Invasive melanoma cells were observed migrating on surfaces with topography (array of posts), coated with adhesive molecules (fibronectin, FN) by Park et al., 2016. Several distinct qualitative behaviors they observed included persistent polarity, oscillation between the cell front and back, and random dynamics. To gain insight into the link between intracellular and ECM signaling, we compared experimental observations to a sequence of mathematical models encoding distinct hypotheses. The successful model required several critical factors. (1) Competition of lamellipodia for limited pools of GTPases. (2) Protrusion / contraction of lamellipodia influence ECM signaling. (3) ECM-mediated activation of Rho. A model combining these elements explains all three cellular behaviors and correctly predicts the results of experimental perturbations. This study yields new insight into how the dynamic interactions between intracellular signaling and the cells environment influence cell behavior.
Cell polarization and directional cell migration can display random, persistent and oscillatory dynamic patterns. However, it is not clear if these polarity patterns can be explained by the same underlying regulatory mechanism. Here, we show that random, persistent and oscillatory migration accompanied by polarization can simultaneously occur in populations of melanoma cells derived from tumors with different degrees of aggressiveness. We demonstrate that all these patterns and the probabilities of their occurrence are quantitatively accounted for by a simple mechanism involving a spatially distributed, mechano-chemical feedback coupling the dynamically changing extracellular matrix (ECM)-cell contacts to the activation of signaling downstream of the Rho-family small GTPases. This mechanism is supported by a predictive mathematical model and extensive experimental validation, and can explain previously reported results for diverse cell types. In melanoma, this mechanism also accounts for the effects of genetic and environmental perturbations, including mutations linked to invasive cell spread. The resulting mechanistic understanding of cell polarity quantitatively captures the relationship between population variability and phenotypic plasticity, with the potential to account for a wide variety of cell migration states in diverse pathological and physiological conditions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا