Do you want to publish a course? Click here

Osteocytes as a record of bone formation dynamics: A mathematical model of osteocyte generation in bone matrix

232   0   0.0 ( 0 )
 Added by Pascal Buenzli
 Publication date 2014
  fields Biology Physics
and research's language is English




Ask ChatGPT about the research

The formation of new bone involves both the deposition of bone matrix, and the formation of a network of cells embedded within the bone matrix, called osteocytes. Osteocytes derive from bone-synthesising cells (osteoblasts) that become buried in bone matrix during bone deposition. The generation of osteocytes is a complex process that remains incompletely understood. Whilst osteoblast burial determines the density of osteocytes, the expanding network of osteocytes regulates in turn osteoblast activity and osteoblast burial. In this paper, a spatiotemporal continuous model is proposed to investigate the osteoblast-to-osteocyte transition. The aims of the model are (i) to link dynamic properties of osteocyte generation with properties of the osteocyte network imprinted in bone, and (ii) to investigate Marottis hypothesis that osteocytes prompt the burial of osteoblasts when they become covered with sufficient bone matrix. Osteocyte density is assumed in the model to be generated at the moving bone surface by a combination of osteoblast density, matrix secretory rate, rate of entrapment, and curvature of the bone substrate, but is found to be determined solely by the ratio of the instantaneous burial rate and matrix secretory rate. Osteocyte density does not explicitly depend on osteoblast density nor curvature. Osteocyte apoptosis is also included to distinguish between the density of osteocyte lacuna and the density of live osteocytes. Experimental measurements of osteocyte lacuna densities are used to estimate the rate of burial of osteoblasts in bone matrix. These results suggest that: (i) burial rate decreases during osteonal infilling, and (ii) the control of osteoblast burial by osteocytes is likely to emanate as a collective signal from a large group of osteocytes, rather than from the osteocytes closest to the bone deposition front.



rate research

Read More

Until recently many studies of bone remodeling at the cellular level have focused on the behavior of mature osteoblasts and osteoclasts, and their respective precursor cells, with the role of osteocytes and bone lining cells left largely unexplored. This is particularly true with respect to the mathematical modeling of bone remodeling. However, there is increasing evidence that osteocytes play important roles in the cycle of targeted bone remodeling, in serving as a significant source of RANKL to support osteoclastogenesis, and in secreting the bone formation inhibitor sclerostin. Moreover, there is also increasing interest in sclerostin, an osteocyte-secreted bone formation inhibitor, and its role in regulating local response to changes in the bone microenvironment. Here we develop a cell population model of bone remodeling that includes the role of osteocytes, sclerostin, and allows for the possibility of RANKL expression by osteocyte cell populations. This model extends and complements many of the existing mathematical models for bone remodeling but can be used to explore aspects of the process of bone remodeling that were previously beyond the scope of prior modeling work. Through numerical simulations we demonstrate that our model can be used to theoretically explore many of the most recent experimental results for bone remodeling, and can be utilized to assess the effects of novel bone-targeting agents on the bone remodeling process.
Bone is a biomaterial undergoing continuous renewal. The renewal process is known as bone remodelling and is operated by bone-resorbing cells (osteoclasts) and bone-forming cells (osteoblasts). Both biochemical and biomechanical regulatory mechanisms have been identified in the interaction between osteoclasts and osteoblasts. Here we focus on an additional and poorly understood potential regulatory mechanism of bone cells, that involves the morphology of the microstructure of bone. Bone cells can only remove and replace bone at a bone surface. However, the microscopic availability of bone surface depends in turn on the ever-changing bone microstructure. The importance of this geometrical dependence is unknown and difficult to quantify experimentally. Therefore, we develop a sophisticated mathematical model of bone cell interactions that takes into account biochemical, biomechanical and geometrical regulations. We then investigate numerically the influence of bone surface availability in bone remodelling within a representative bone tissue sample. The interdependence between the bone cells activity, which modifies the bone microstructure, and changes in the microscopic bone surface availability, which in turn influences bone cell development and activity, is implemented using a remarkable experimental relationship between bone specific surface and bone porosity. Our model suggests that geometrical regulation of the activation of new remodelling events could have a significant effect on bone porosity and bone stiffness. On the other hand, geometrical regulation of late stages of osteoblast and osteoclast differentiation seems less significant. We conclude that the development of osteoporosis is probably accelerated by this geometrical regulation in cortical bone, but probably slowed down in trabecular bone.
Purpose: Experimental measurements of bone mineral density distributions (BMDDs) enable a determination of secondary mineralisation kinetics in bone, but the maximum degree of mineralisation and how this maximum is approached remain uncertain. We thus test computationally different hypotheses on late stages of bone mineralisation by simulating BMDDs in low turnover conditions. Materials and Methods: An established computational model of the BMDD that accounts for mineralisation and remodelling processes was extended to limit mineralisation to various maximum calcium capacities of bone. Simulated BMDDs obtained by reducing turnover rate from the reference trabecular BMDD under different assumptions on late stage mineralisation kinetics were compared with experimental BMDDs of low-turnover bone. Results: Simulations show that an abrupt stopping of mineralisation near a maximum calcium capacity induces a pile-up of minerals in the BMDD statistics that is not observed experimentally. With a smooth decrease of mineralisation rate, imposing low maximum calcium capacities helps to match peak location and width of simulated low turnover BMDDs with peak location and width of experimental BMDDs, but results in a distinctive asymmetric peak shape. No tuning of turnover rate and maximum calcium capacity was able to explain the differences found in experimental BMDDs between trabecular bone (high turnover) and femoral cortical bone (low turnover). Conclusions: Secondary mineralisation in human bone does not stop abruptly, but continues slowly up to a calcium content greater than 30 wt% Ca. The similar mineral heterogeneity seen in trabecular and femoral cortical bones at different peak locations was unexplained by turnover differences tested.
Bone remodelling maintains the functionality of skeletal tissue by locally coordinating bone-resorbing cells (osteoclasts) and bone-forming cells (osteoblasts) in the form of Bone Multicellular Units (BMUs). Understanding the emergence of such structured units out of the complex network of biochemical interactions between bone cells is essential to extend our fundamental knowledge of normal bone physiology and its disorders. To this end, we propose a spatio-temporal continuum model that integrates some of the most important interaction pathways currently known to exist between cells of the osteoblastic and osteoclastic lineage. This mathematical model allows us to test the significance and completeness of these pathways based on their ability to reproduce the spatio-temporal dynamics of individual BMUs. We show that under suitable conditions, the experimentally-observed structured cell distribution of cortical BMUs is retrieved. The proposed model admits travelling-wave-like solutions for the cell densities with tightly organised profiles, corresponding to the progression of a single remodelling BMU. The shapes of these spatial profiles within the travelling structure can be linked to the intrinsic parameters of the model such as differentiation and apoptosis rates for bone cells. In addition to the cell distribution, the spatial distribution of regulatory factors can also be calculated. This provides new insights on how different regulatory factors exert their action on bone cells leading to cellular spatial and temporal segregation, and functional coordination.
Bone remodelling is carried out by `bone multicellular units (BMUs) in which active osteoclasts and active osteoblasts are spatially and temporally coupled. The refilling of new bone by osteoblasts towards the back of the BMU occurs at a rate that depends both on the number of osteoblasts and on their secretory activity. In cortical bone, a linear phenomenological relationship between matrix apposition rate (MAR) and BMU cavity radius is found experimentally. How this relationship emerges from the combination of complex, nonlinear regulations of osteoblast number and secretory activity is unknown. Here, we extend our previous mathematical model of cell development within a single BMU to investigate how osteoblast number and osteoblast secretory activity vary along the BMUs closing cone. MARs predicted by the model are compared with data from tetracycline double labelling experiments. We find that the linear phenomenological relationship observed in these experiments between MAR and BMU cavity radius holds for most of the refilling phase simulated by our model, but not near the start and end of refilling. This suggests that at a particular bone site undergoing remodelling, bone formation starts and ends rapidly. Our model also suggests that part of the observed cross-sectional variability in tetracycline data may be due to different bone sites being refilled by BMUs at different stages of their lifetime. The different stages of a BMUs lifetime depend on whether the cell populations within the BMU are still developing or have reached a quasi-steady state while travelling through bone. We find that due to their longer lifespan, active osteoblasts reach a quasi-steady distribution more slowly than active osteoclasts. We suggest that this fact may locally enlarge the Haversian canal diameter (due to a local lack of osteoblasts compared to osteoclasts) near the BMUs point of origin.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا