Do you want to publish a course? Click here

Towards phase-coherent caloritronics in superconducting circuits

243   0   0.0 ( 0 )
 Added by Antonio Fornieri
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The emerging field of phase-coherent caloritronics (from the Latin word calor, i.e., heat) is based on the possibility to control heat currents using the phase difference of the superconducting order parameter. The goal is to design and implement thermal devices able to master energy transfer with a degree of accuracy approaching the one reached for charge transport by contemporary electronic components. This can be obtained by exploiting the macroscopic quantum coherence intrinsic to superconducting condensates, which manifests itself through the Josephson and the proximity effect. Here, we review recent experimental results obtained in the realization of heat interferometers and thermal rectifiers, and discuss a few proposals for exotic non-linear phase-coherent caloritronic devices, such as thermal transistors, solid-state memories, phase-coherent heat splitters, microwave refrigerators, thermal engines and heat valves. Besides being very attractive from the fundamental physics point of view, these systems are expected to have a vast impact on many cryogenic microcircuits requiring energy management, and possibly lay the first stone for the foundation of electronic thermal logic.

rate research

Read More

We investigate heat circulators where a phase coherent region is contacted by three leads that are either normal- or superconducting. A magnetic field, and potentially the superconducting phases, allow to control the preferential direction of the heat flow between the three-different temperature-biased contacts. The main goal of this study is to analyze the requirements for heat circulation in non-ideal devices, in particular focusing on sample-to-sample variations. Quite generally, we find that the circulation performance of the devices is good as long as only a few transport channels are involved. We compare the performance of circulators with normalconducting contacts to those with superconducting contacts and find that the circulation coefficient are essentially unchanged.
We demonstrate non-adiabatic charge pumping utilizing a sequence of coherent oscillations between a superconducting island and two reservoirs. Our method, based on pulsed quantum state manipulations, allows to speedup charge pumping to a rate which is limited by the coupling between the island and the reservoirs given by the Josephson energy. Our experimental and theoretical studies also demonstrate that relaxation can be employed to reset the pump and avoid accumulation of errors due to non-ideal control pulses.
Superconducting circuits provide a new platform to study nonstationary cavity QED phenomena. An example of such a phenomenon is a dynamical Lamb effect which is a parametric excitation of an atom due to the nonadiabatic modulation of its Lamb shift. This effect has been initially introduced for a natural atom in a varying cavity, while we suggested its realization in a superconducting qubit-cavity system with dynamically tunable coupling. In the present paper, we study the interplay between the dynamical Lamb effect and the energy dissipation, which is unavoidable in realistic systems. We find that despite of naive expectations this interplay can lead to unexpected dynamical regimes. One of the most striking results is that photon generation from vacuum can be strongly enhanced due to the qubit relaxation, which opens a new channel for such a process. We also show that dissipation in the cavity can increase the qubit excited state population. Our results can be used for the experimental observation and investigation of the dynamical Lamb effect and accompanying quantum effects.
84 - G. Catelani , D. M. Basko 2018
We study the effect of non-equilibrium quasiparticles on the operation of a superconducting device (a qubit or a resonator), including heating of the quasiparticles by the device operation. Focusing on the competition between heating via low-frequency photon absorption and cooling via photon and phonon emission, we obtain a remarkably simple non-thermal stationary solution of the kinetic equation for the quasiparticle distribution function. We estimate the influence of quasiparticles on relaxation and excitation rates for transmon qubits, and relate our findings to recent experiments.
163 - P. J. Leek , S. Filipp , P. Maurer 2008
We demonstrate time resolved driving of two-photon blue sideband transitions between superconducting qubits and a transmission line resonator. Using the sidebands, we implement a pulse sequence that first entangles one qubit with the resonator, and subsequently distributes the entanglement between two qubits. We show generation of 75% fidelity Bell states by this method. The full density matrix of the two qubit system is extracted using joint measurement and quantum state tomography, and shows close agreement with numerical simulation. The scheme is potentially extendable to a scalable universal gate for quantum computation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا